Hilfe:Latex: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
(13 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
Text modified from Wikipedia<ref>http://en.wikipedia.org/wiki/Help:Displaying_a_formula</ref>. It is under the [http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License Creative Commons Attribution-ShareAlike License]; additional terms may apply. | |||
MediaWiki uses a subset of AMS-LaTeX | '''MediaWiki''' uses a subset of '''TeX markup''', including some extensions from LaTeX and AMS-LaTeX, for mathematical formulae. It generates either PNG images or simple HTML markup, depending on [[Help:Preferences#Math|user preferences]] and the complexity of the expression. | ||
More precisely, MediaWiki filters the markup through | More precisely, MediaWiki filters the markup through Texvc, which in turn passes the commands to TeX for the actual rendering. Thus, only a limited part of the full TeX language is supported; see below for details. | ||
__TOC__ | __TOC__ | ||
== | ==Technicals== | ||
===Syntax=== | |||
Traditionally, math markup goes inside the XML-style tag math: <code><nowiki><math> ... </math></nowiki></code>. The old Edit toolbar has a button for this. | |||
However, one can also use parser function <code><nowiki>{{#tag:math|...}}</nowiki></code>; this is more versatile: the wikitext at the dots is first expanded before interpreting the result as TeX code. Thus it can contain parameters, variables, parser functions and templates. Note however that with this syntax double braces in the TeX code must have a space in between, to avoid confusion with their use in template calls etc. Also, to produce the character "|" inside the TeX code, use <nowiki>{{!}}</nowiki>.<ref>This requires the wiki to have the [[Template:!]] containing "|", as many wikis do.</ref> | |||
In TeX, as in HTML, extra spaces and newlines are ignored. | |||
=== | ===Rendering=== | ||
The PNG images are black on white (not transparent). These colors, as well as font sizes and types, are independent of browser settings or CSS. Font sizes and types will often deviate from what HTML renders. Vertical alignment with the surrounding text can also be a problem. The css selector of the images is <code>img.tex</code>. | |||
It should be pointed out that solutions to most of these shortcomings have been proposed by Maynard Handley, but have not been implemented yet. | |||
The <code>alt</code> attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the <code><nowiki><math></nowiki></code> and <code><nowiki></math></nowiki></code>. | |||
Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use <code>\text</code>, <code>\mbox</code>, or <code>\mathrm</code>. You can also define new function names using <code>\operatorname{...}</code>. For example, <code><nowiki><math>\text{abc}</math></nowiki></code> gives <math>\text{abc}</math>. This does not work for special characters, they are ignored unless the whole <nowiki><math></nowiki> expression is rendered in HTML: | |||
*<nowiki><math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}</math></nowiki> | |||
*<nowiki><math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}\,</math></nowiki> | |||
gives: | |||
*<math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}</math> | |||
*<math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}\,</math> | |||
See [[bugzilla:798|bug 798]] for details. | |||
Nevertheless, using <code>\mbox</code> instead of <code>\text</code>, more characters are allowed | |||
For example, | |||
*<nowiki><math>\mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ}</math></nowiki> | |||
*<nowiki><math>\mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ}\,</math></nowiki> | |||
*<nowiki><math>\ | |||
*<nowiki><math>\ | |||
gives: | gives: | ||
*<math>\mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ}</math> | |||
*<math>\mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ}\,</math> | |||
*<math>\ | But <code>\mbox{ð}</code> and <code>\mbox{þ}</code> will give an error: | ||
*<math>\ | * <math>\mbox {ð}</math> | ||
* <math>\mbox {þ}</math> | |||
==TeX vs HTML== | ==TeX vs HTML== | ||
Before introducing TeX markup for producing special characters, it should be noted that, as this comparison table shows, sometimes similar results can be achieved in HTML | Before introducing TeX markup for producing special characters, it should be noted that, as this comparison table shows, sometimes similar results can be achieved in HTML. | ||
{| | {| class="wikitable" | ||
|- | |- | ||
! TeX | ! TeX Syntax (forcing PNG) | ||
! TeX | ! TeX Rendering | ||
! HTML | ! HTML Syntax | ||
! HTML | ! HTML Rendering | ||
|- | |- | ||
| <code><nowiki><math>\alpha\,\!</math></nowiki></code> | | <code><nowiki><math>\alpha\,\!</math></nowiki></code> | ||
| <math>\alpha\,\!</math> | | <math>\alpha\,\!</math> | ||
| <code><nowiki>{{math|< | | <code><nowiki>{{math|<VAR>&alpha;</VAR>}}</nowiki></code> | ||
| {{math|< | | {{math|<VAR>α</VAR>}} | ||
|- | |- | ||
| <code><nowiki><math>\sqrt{2}</math></nowiki></code> | | <code><nowiki><math>\sqrt{2}</math></nowiki></code> | ||
Zeile 104: | Zeile 75: | ||
The codes on the left produce the symbols on the right, but the latter can also be put directly in the wikitext, except for ‘=’. | The codes on the left produce the symbols on the right, but the latter can also be put directly in the wikitext, except for ‘=’. | ||
{| class="wikitable" | |||
- | |- | ||
! Syntax | |||
! Rendering | |||
|- valign="top" | |||
|<pre><nowiki>&alpha; &beta; &gamma; &delta; &epsilon; &zeta; | |||
&eta; &theta; &iota; &kappa; &lambda; &mu; &nu; | &eta; &theta; &iota; &kappa; &lambda; &mu; &nu; | ||
&xi; &omicron; &pi; &rho; &sigma; &sigmaf; | &xi; &omicron; &pi; &rho; &sigma; &sigmaf; | ||
&tau; &upsilon; &phi; &chi; &psi; &omega; | &tau; &upsilon; &phi; &chi; &psi; &omega; | ||
&Gamma; &Delta; &Theta; &Lambda; &Xi; &Pi; | &Gamma; &Delta; &Theta; &Lambda; &Xi; &Pi; | ||
&Sigma; &Phi; &Psi; &Omega; | &Sigma; &Phi; &Psi; &Omega; | ||
</nowiki></pre> | </nowiki></pre> | ||
| style="texhtml" |α β γ δ ε ζ<br | |||
/>η θ ι κ λ μ ν<br | />η θ ι κ λ μ ν<br | ||
/>ξ ο π ρ σ ς<br | />ξ ο π ρ σ ς<br | ||
/>τ υ φ χ ψ ω<br | />τ υ φ χ ψ ω<br | ||
/>Γ Δ Θ Λ Ξ Π<br | />Γ Δ Θ Λ Ξ Π<br | ||
/>Σ Φ Ψ Ω | />Σ Φ Ψ Ω | ||
|- valign="top" | |||
| valign="middle" | <pre><nowiki>&int; &sum; &prod; &radic; &minus; &plusmn; &infin; | |||
- | |||
&asymp; &prop; {{=}} &equiv; &ne; &le; &ge; | &asymp; &prop; {{=}} &equiv; &ne; &le; &ge; | ||
&times; &middot; &divide; &part; &prime; &Prime; | &times; &middot; &divide; &part; &prime; &Prime; | ||
Zeile 135: | Zeile 103: | ||
&rArr; &hArr; &rarr; &harr; &uarr; | &rArr; &hArr; &rarr; &harr; &uarr; | ||
&alefsym; - &ndash; &mdash; | &alefsym; - &ndash; &mdash; | ||
</nowiki></pre> | </nowiki></pre> | ||
| style="texhtml" |∫ ∑ ∏ √ − ± ∞<br | |||
/>≈ ∝ = ≡ ≠ ≤ ≥<br | />≈ ∝ = ≡ ≠ ≤ ≥<br | ||
/>× · ÷ ∂ ′ ″<br | />× · ÷ ∂ ′ ″<br | ||
Zeile 146: | Zeile 112: | ||
/>⇒ ⇔ → ↔ ↑<br | />⇒ ⇔ → ↔ ↑<br | ||
/>ℵ - – — | />ℵ - – — | ||
|} | |||
The | The use of HTML instead of TeX is still under discussion. The arguments either way can be summarised | ||
as follows. | |||
===Pros of HTML=== | ===Pros of HTML=== | ||
# | # In-line HTML formulae always align properly with the rest of the HTML text. | ||
# | # The formula’s background and font size match the rest of HTML contents and the appearance respects CSS and browser settings while the typeface is conveniently altered to help you identify formulae. | ||
# The HTML code, if entered diligently, will contain all semantic information to transform the equation back to TeX or any other code as needed. It can even contain differences TeX does not normally catch, e.g. <code><nowiki>{{math|''i''}}</nowiki></code> for the | # Pages using HTML code for formulae will load faster and they will create less clutter on your hard disk. | ||
# Formulae typeset with HTML code will be accessible to client-side script links (a.k.a. scriptlets). | |||
# The display of a formula entered using mathematical templates can be conveniently altered by modifying the templates involved; this modification will affect all relevant formulae without any manual intervention. | |||
# The HTML code, if entered diligently, will contain all semantic information to transform the equation back to TeX or any other code as needed. It can even contain differences TeX does not normally catch, e.g. <code><nowiki>{{math|''i''}}</nowiki></code> for the imaginary unit and <code><nowiki>{{math|<VAR>i</VAR>}}</nowiki></code> for an arbitrary index variable. | |||
===Pros of TeX=== | ===Pros of TeX=== | ||
# TeX is semantically | # TeX is semantically superior to HTML. In TeX, "<code><nowiki><math>x</math></nowiki></code>" means "mathematical variable <math>x</math>", whereas in HTML "<code>x</code>" could mean anything. Information has been irrevocably lost. | ||
# On the other hand, if you encode the same formula as "<code><nowiki>{{math|<VAR>x</VAR>}}</nowiki></code>", you get the same visual result and no information is lost. This requires diligence and more typing that could make the formula harder to understand as you type it. However, since there are far more readers than editors, this effort is worth considering. | |||
# TeX has been specifically designed for typesetting formulae, so input is easier and more natural if you are accustomed to it, and output is more aesthetically pleasing if you focus on a single formula rather than on the whole containing page. | |||
# | # One consequence of point 1 is that TeX code can be transformed into HTML, but not vice-versa. This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It is true that the current situation is not ideal, but that is not a good reason to drop information/contents. It is more a reason to help improve the situation. | ||
# TeX | # Another consequence of point 1 is that TeX can be converted to MathML for browsers which support it, thus keeping its semantics and allowing the rendering to be better suited for the reader’s graphic device. | ||
# TeX | # When writing in TeX, editors need not worry about whether this or that version of this or that browser supports this or that HTML entity. The burden of these decisions is put on the software. This does not hold for HTML formulae, which can easily end up being rendered wrongly or differently from the editor’s intentions on a different browser. | ||
# More importantly, the serif font used for rendering formulae is browser-dependent and it may be missing some important glyphs. While the browser generally capable to substitute a matching glyph from a different font family, it need not be the case for combined glyphs. | |||
# TeX is the preferred text formatting language of most professional mathematicians, scientists, and engineers. It is easier to persuade them to contribute if they can write in TeX. | |||
== Functions, symbols, special characters == | |||
<!-- Eight symbols per line seems to be optimal--> | |||
{| class="wikitable" | |||
! colspan="2" |<h3>Accents/diacritics</h3> | |||
<!-- Eight symbols per line seems to be optimal --> | |||
{|class="wikitable" | |||
|- | |- | ||
|<code>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}</code> | |||
|<math>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!</math> | |||
|- | |- | ||
|<code>\ | |<code>\check{a} \bar{a} \ddot{a} \dot{a}</code> | ||
|<math>\ | |<math>\check{a} \bar{a} \ddot{a} \dot{a}\!</math> | ||
|- | |- | ||
| | ! colspan="2" | | ||
<h3>Standard functions</h3> | |||
|- | |- | ||
|<code>\ | |<code>\sin a \cos b \tan c</code> | ||
|<math>\ | |<math>\sin a \cos b \tan c\!</math> | ||
|- | |- | ||
|<code>\sec d \csc e \cot f</code> | |||
|<math>\sec d \csc e \cot f\,\!</math> | |||
|- | |- | ||
|<code>\ | |<code>\arcsin h \arccos i \arctan j</code> | ||
|<math>\ | |<math>\arcsin h \arccos i \arctan j\,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\sinh k \cosh l \tanh m \coth n\!</code> | ||
|<math>\ | |<math>\sinh k \cosh l \tanh m \coth n\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!</code> | ||
|<math>\ | |<math>\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t</code> | ||
|<math>\ | |<math>\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t\,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\lim u \limsup v \liminf w \min x \max y\!</code> | ||
|<math>\ | |<math>\lim u \limsup v \liminf w \min x \max y\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!</code> | ||
|<math>\ | |<math>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n</code> | ||
|<math>\ | |<math>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n\!</math> | ||
|- | |- | ||
! colspan="2" | | |||
!colspan="2"| | |||
<h3>Modular arithmetic</h3> | |||
|- | |- | ||
|<code>\ | |<code>s_k \equiv 0 \pmod{m}</code> | ||
|<math>\ | |<math>s_k \equiv 0 \pmod{m}\,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>a\,\bmod\,b</code> | ||
|<math>\ | |<math>a\,\bmod\,b\,\!</math> | ||
|- | |- | ||
!colspan="2"| | ! colspan="2" | <h3>Derivatives</h3> | ||
|- | |- | ||
|<code>\ | |<code>\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}</code> | ||
|<math>\ | |<math>\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}</math> | ||
|- | |- | ||
!colspan="2"| | ! colspan="2" | | ||
<h3>Sets</h3> | |||
|- | |- | ||
|<code>\ | |<code>\forall \exists \empty \emptyset \varnothing</code> | ||
|<math>\ | |<math>\forall \exists \empty \emptyset \varnothing\,\!</math> | ||
|- | |- | ||
|<code>\in \ni \not \in \notin \subset \subseteq \supset \supseteq</code> | |||
|<math>\in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!</math> | |||
|- | |- | ||
|<code>\ | |<code>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus</code> | ||
|<math>\ | |<math>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup</code> | ||
|<math>\ | |<math>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!</math> | ||
|- | |- | ||
!colspan="2"| | ! colspan="2" | | ||
<h3>Operators</h3> | |||
|- | |- | ||
|<code> | |<code>+ \oplus \bigoplus \pm \mp - </code> | ||
|<math> | |<math>+ \oplus \bigoplus \pm \mp - \,\!</math> | ||
|- | |- | ||
|<code> | |<code>\times \otimes \bigotimes \cdot \circ \bullet \bigodot</code> | ||
|<math> | |<math>\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\star * / \div \frac{1}{2}</code> | ||
|<math>\ | |<math>\star * / \div \frac{1}{2}\,\!</math> | ||
|- | |- | ||
| | ! colspan="2" | | ||
<h3>Logic</h3> | |||
|- | |- | ||
|<code>\land (or \and) \wedge \bigwedge \bar{q} \to p</code> | |||
|<math>\land \wedge \bigwedge \bar{q} \to p\,\!</math> | |||
|- | |- | ||
|<code>\ | |<code>\lor \vee \bigvee \lnot \neg q \And</code> | ||
|<math>\ | |<math>\lor \vee \bigvee \lnot \neg q \And\,\!</math> | ||
|- | |- | ||
!colspan="2"| | ! colspan="2" | | ||
<h3>Root</h3> | |||
|- | |- | ||
|<code> | |<code>\sqrt{2} \sqrt[n]{x}</code> | ||
|<math> | |<math>\sqrt{2} \sqrt[n]{x}\,\!</math> | ||
|- | |- | ||
|< | ! colspan="2" | <h3>Relations</h3> | ||
|- | |- | ||
|<code>\ | |<code>\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}</code> | ||
|<math>\ | |<math>\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto</code> | ||
|<math>\ | |<math>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!</math> | ||
|- | |- | ||
|<code>\ | |<code> \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox</code> | ||
|<math>\ | |<math> \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox</math> | ||
|- | |- | ||
! colspan="2" | | |||
!colspan="2"| | |||
<h3>Geometric</h3> | |||
|- | |- | ||
|<code>\ | |<code><nowiki>\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ</nowiki></code> | ||
|<math>\ | |<math>\Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!</math> | ||
|- | |- | ||
!colspan="2"| | ! colspan="2" | | ||
<h3>Arrows</h3> | |||
|- | |- | ||
|<code> | |<code>\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow</code> | ||
|<math> | |<math>\leftarrow \rightarrow \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff)</code> | ||
|<math>\ | |<math>\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \!</math> | ||
|- | |- | ||
|<code>\ | |<code>\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow</code> | ||
|<math>\ | |<math>\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow \!</math> | ||
|- | |- | ||
|<code>\ | |<code>\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons</code> | ||
|<math>\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!</math> | |||
|<math | |||
|- | |- | ||
|<code>\ | |<code>\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright</code> | ||
|<math>\ | |<math>\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,\!</math> | ||
|- | |- | ||
|<code> \ | |<code>\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft</code> | ||
|<math> \ | |<math>\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow </code> | ||
|<math>\ | |<math>\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,\!</math> | ||
|- | |- | ||
! colspan="2" | | |||
!colspan="2"| | |||
<h3>Special</h3> | |||
|- | |- | ||
|<code>\ | |<code>\And \eth \S \P \% \dagger \ddagger \ldots \cdots</code> | ||
|<math>\ | |<math>\And \eth \S \P \% \dagger \ddagger \ldots \cdots\,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\smile \frown \wr \triangleleft \triangleright \infty \bot \top</code> | ||
|<math>\ | |<math>\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar</code> | ||
|<math>\ | |<math>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\ell \mho \Finv \Re \Im \wp \complement</code> | ||
|<math>\ | |<math>\ell \mho \Finv \Re \Im \wp \complement\,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp</code> | ||
|<math>\ | |<math>\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!</math> | ||
|- | |- | ||
!colspan="2"| | ! colspan="2" | | ||
<h3>Unsorted (new stuff)</h3> | |||
|- | |- | ||
|<code>\ | |<code> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</code> | ||
|<math>\ | |<math> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</math> | ||
|- | |- | ||
|<code>\ | |<code> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</code> | ||
|<math>\ | |<math> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge\!</math> | ||
|- | |- | ||
|<code>\ | |<code> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</code> | ||
|<math>\ | |<math> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</math> | ||
|- | |- | ||
|<code>\ | |<code> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</code> | ||
|<math>\ | |<math> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</math> | ||
|- | |- | ||
|<code>\ | |<code> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</code> | ||
|<math>\ | |<math> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</math> | ||
|- | |- | ||
|<code>\ | |<code> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</code> | ||
|<math>\ | |<math> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</math> | ||
|- | |- | ||
|<code>\ | |<code> \Vvdash \bumpeq \Bumpeq \eqsim \gtrdot</code> | ||
|<math>\ | |<math> \Vvdash \bumpeq \Bumpeq \eqsim \gtrdot</math> | ||
|- | |- | ||
|<code> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</code> | |||
|<math> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</math> | |||
|- | |- | ||
|<code>\ | |<code> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</code> | ||
|<math>\ | |<math> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</math> | ||
|- | |- | ||
|<code>\ | |<code> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</code> | ||
|<math>\ | |<math> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</math> | ||
|- | |- | ||
|<code>\ | |<code> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</code> | ||
|<math>\ | |<math> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</math> | ||
|- | |- | ||
|<code>\ | |<code> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</code> | ||
|<math>\ | |<math> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</math> | ||
|- | |- | ||
|<code>\ | |<code>\subsetneq</code> | ||
|<math>\ | |<math>\subsetneq</math> | ||
|- | |- | ||
|<code>\ | |<code> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</code> | ||
|<math>\ | |<math> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</math> | ||
|- | |- | ||
|<code>\ | |<code> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</code> | ||
|<math>\ | |<math> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</math> | ||
|- | |- | ||
|<code>\ | |<code> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</code> | ||
|<math>\ | |<math> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</math> | ||
|- | |- | ||
|<code>\ | |<code>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus</code> | ||
|<math>\ | |<math>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq</code> | ||
|<math>\ | |<math>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\dashv \asymp \doteq \parallel</code> | ||
|<math>\ | |<math>\dashv \asymp \doteq \parallel\,\!</math> | ||
|- | |- | ||
|<code>\ | |<code>\ulcorner \urcorner \llcorner \lrcorner</code> | ||
|<math>\ulcorner \urcorner \llcorner \lrcorner</math> | |||
|<math>\ | |||
|} | |} | ||
== Larger expressions == | == Larger expressions == | ||
=== Subscripts, superscripts, integrals === | === Subscripts, superscripts, integrals === | ||
{| | {| border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;" | ||
!rowspan="2"|Feature!!rowspan="2"|Syntax!!colspan="2"|How it looks rendered | |||
|- | |||
!HTML!!PNG | |||
|- | |- | ||
|- | |- | ||
! | |Superscript||<code>a^2</code>||<math>a^2</math>||<math>a^2 \,\!</math> | ||
|- | |- | ||
| | |Subscript||<code>a_2</code>||<math>a_2</math>||<math>a_2 \,\!</math> | ||
|<code> | |||
|- | |- | ||
| | |rowspan=2|Grouping||<code>a^{2+2}</code>||<math>a^{2+2}</math>||<math>a^{2+2}\,\!</math> | ||
|<code> | |||
|- | |- | ||
|<code>a_{i,j}</code>||<math>a_{i,j}</math>||<math>a_{i,j}\,\!</math> | |||
|<code> | |||
|- | |- | ||
|<code> | |rowspan=2|Combining sub & super without and with horizontal separation||<code>x_2^3</code>||<math>x_2^3</math>||<math>x_2^3 \,\!</math> | ||
|- | |- | ||
|<code>{x_2}^3</code>||<math>{x_2}^3</math>||<math>{x_2}^3 \,\!</math> | |||
|<code>x_2^3</code>|| ||<math>x_2^3 \,\!</math> | |||
|- | |- | ||
|<code>{ | |Super super||<code>10^{10^{ \,\!{8} }</code>||colspan=2|<math>10^{10^{ \,\! 8 } }</math> | ||
|- | |- | ||
| Super super | |Super super||<code>10^{10^{ \overset{8}{} }}</code>||colspan=2|<math>10^{10^{ \overset{8}{} }}</math> | ||
|<code>10^{10^{8}}</code>|| | |||
|- | |- | ||
| | |Super super (wrong in HTML in some browsers)||<code>10^{10^8}</code> ||colspan=2|<math>10^{10^8}</math> | ||
|<code> | |||
|- | |- | ||
|<code>{ | |rowspan="2"|Preceding and/or Additional sub & super||<code>\sideset{_1^2}{_3^4}\prod_a^b</code>||colspan=2|<math>\sideset{_1^2}{_3^4}\prod_a^b</math> | ||
|- | |- | ||
|<code>{}_1^2\!\Omega_3^4</code>||colspan=2|<math>{}_1^2\!\Omega_3^4</math> | |||
|<code> | |||
|- | |- | ||
|<code>\ | |rowspan="4"|Stacking | ||
|<code>\overset{\alpha}{\omega}</code>||colspan="2"|<math>\overset{\alpha}{\omega}</math> | |||
|- | |- | ||
|<code>\ | |<code>\underset{\alpha}{\omega}</code>||colspan="2"|<math>\underset{\alpha}{\omega}</math> | ||
|- | |- | ||
|<code>\ | |<code>\overset{\alpha}{\underset{\gamma}{\omega}}</code>||colspan="2"|<math>\overset{\alpha}{\underset{\gamma}{\omega}}</math> | ||
|- | |- | ||
|<code>\stackrel{\alpha}{\omega}</code>||colspan="2"|<math>\stackrel{\alpha}{\omega}</math> | |||
|<code> | |||
|- | |- | ||
| Derivative ( | |Derivative (forced PNG)||<code>x', y<nowiki>''</nowiki>, f', f<nowiki>''</nowiki>\!</code>|| ||<math>x', y'', f', f''\!</math> | ||
|<code>x | |||
|- | |- | ||
| Derivative ( | |Derivative (f in italics may overlap primes in HTML)||<code>x', y<nowiki>''</nowiki>, f', f<nowiki>''</nowiki></code>||<math>x', y'', f', f''</math>||<math>x', y'', f', f''\!</math> | ||
|<code>x | |||
|- | |- | ||
| Derivative | |Derivative (wrong in HTML)||<code>x^\prime, y^{\prime\prime}</code>||<math>x^\prime, y^{\prime\prime}</math>||<math>x^\prime, y^{\prime\prime}\,\!</math> | ||
|<code>\ | |||
|- | |- | ||
| | |Derivative (wrong in PNG)||<code>x\prime, y\prime\prime</code>||<math>x\prime, y\prime\prime</math>||<math>x\prime, y\prime\prime\,\!</math> | ||
|<code>\ | |||
|- | |- | ||
|<code>\ | |Derivative dots||<code>\dot{x}, \ddot{x}</code>||colspan=2|<math>\dot{x}, \ddot{x}</math> | ||
|- | |- | ||
|<code>\ | |rowspan="4"|Underlines, overlines, vectors||<code>\hat a \ \bar b \ \vec c</code>||colspan=2|<math>\hat a \ \bar b \ \vec c</math> | ||
|- | |- | ||
|<code>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</code>||colspan=2|<math>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</math> | |||
|<code> | |||
|- | |- | ||
|<code>\overline{g h i} \ \underline{j k l}</code>||colspan=2|<math>\overline{g h i} \ \underline{j k l}</math> | |||
|<code>\ | |||
|- | |- | ||
|<code>\not 1 \ \cancel{123}</code>||colspan=2|<math>\not 1 \ \cancel{123}</math> | |||
|<code>\ | |||
|- | |- | ||
| | |Arrows||<code> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</code>||colspan=2|<math> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</math> | ||
|<code>\ | |||
|- | |- | ||
| | |Overbraces||<code>\overbrace{ 1+2+\cdots+100 }^{5050}</code>||colspan=2|<math>\overbrace{ 1+2+\cdots+100 }^{5050}</math> | ||
|<code>\ | |||
|- | |- | ||
| | |Underbraces||<code>\underbrace{ a+b+\cdots+z }_{26}</code>||colspan=2|<math>\underbrace{ a+b+\cdots+z }_{26}</math> | ||
|<code>\ | |||
|- | |- | ||
| Sum | |Sum||<code>\sum_{k=1}^N k^2</code>||colspan=2|<math>\sum_{k=1}^N k^2</math> | ||
|<code> | |||
|- | |- | ||
| | |Sum (force <code>\textstyle</code>)||<code>\textstyle \sum_{k=1}^N k^2 </code>||colspan=2|<math>\textstyle \sum_{k=1}^N k^2</math> | ||
|<code>\ | |||
|- | |- | ||
| Product | |Product||<code>\prod_{i=1}^N x_i</code>||colspan=2|<math>\prod_{i=1}^N x_i</math> | ||
|<code> | |||
|- | |- | ||
| | |Product (force <code>\textstyle</code>)||<code>\textstyle \prod_{i=1}^N x_i</code>||colspan=2|<math>\textstyle \prod_{i=1}^N x_i</math> | ||
|<code>\ | |||
|- | |- | ||
| Coproduct | |Coproduct||<code>\coprod_{i=1}^N x_i</code>||colspan=2|<math>\coprod_{i=1}^N x_i</math> | ||
|<code> | |||
|- | |- | ||
| | |Coproduct (force <code>\textstyle</code>)||<code>\textstyle \coprod_{i=1}^N x_i</code>||colspan=2|<math>\textstyle \coprod_{i=1}^N x_i</math> | ||
|<code>\ | |||
|- | |- | ||
| Limit | |Limit||<code>\lim_{n \to \infty}x_n</code>||colspan=2|<math>\lim_{n \to \infty}x_n</math> | ||
|<code> | |||
|- | |- | ||
| | |Limit (force <code>\textstyle</code>)||<code>\textstyle \lim_{n \to \infty}x_n</code>||colspan=2|<math>\textstyle \lim_{n \to \infty}x_n</math> | ||
|<code>\ | |||
|- | |- | ||
| Integral | |Integral||<code>\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx</code>||colspan=2|<math>\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx</math> | ||
|<code>\ | |||
|- | |- | ||
| Integral ( | |Integral (alternate limits style)||<code>\int_{1}^{3}\frac{e^3/x}{x^2}\, dx</code>||colspan=2|<math>\int_{1}^{3}\frac{e^3/x}{x^2}\, dx</math> | ||
|<code>\ | |||
|- | |- | ||
| Integral (force <code>\textstyle</code> | |Integral (force <code>\textstyle</code>)||<code>\textstyle \int\limits_{-N}^{N} e^x\, dx</code>||colspan=2|<math>\textstyle \int\limits_{-N}^{N} e^x\, dx</math> | ||
|<code>\textstyle \ | |||
|- | |- | ||
| | |Integral (force <code>\textstyle</code>, alternate limits style)||<code>\textstyle \int_{-N}^{N} e^x\, dx</code>||colspan=2|<math>\textstyle \int_{-N}^{N} e^x\, dx</math> | ||
|<code>\ | |||
|- | |- | ||
| | |Double integral||<code>\iint\limits_D \, dx\,dy</code>||colspan=2|<math>\iint\limits_D \, dx\,dy</math> | ||
|<code>\ | |||
|- | |- | ||
| | |Triple integral||<code>\iiint\limits_E \, dx\,dy\,dz</code>||colspan=2|<math>\iiint\limits_E \, dx\,dy\,dz</math> | ||
|<code>\ | |||
|- | |- | ||
| | |Quadruple integral||<code>\iiiint\limits_F \, dx\,dy\,dz\,dt</code>||colspan=2|<math>\iiiint\limits_F \, dx\,dy\,dz\,dt</math> | ||
|<code>\ | |||
|- | |- | ||
| | |Line or path integral||<code>\int_C x^3\, dx + 4y^2\, dy</code>||colspan=2|<math>\int_C x^3\, dx + 4y^2\, dy</math> | ||
|<code>\ | |||
|- | |- | ||
| | |Closed line or path integral||<code>\oint_C x^3\, dx + 4y^2\, dy</code>||colspan=2|<math>\oint_C x^3\, dx + 4y^2\, dy</math> | ||
|<code>\ | |||
|- | |- | ||
| | |Intersections||<code>\bigcap_1^n p</code>||colspan=2|<math>\bigcap_1^n p</math> | ||
|<code>\ | |- | ||
|Unions||<code>\bigcup_1^k p</code>||colspan=2|<math>\bigcup_1^k p</math> | |||
|} | |} | ||
=== Fractions, matrices, multilines === | === Fractions, matrices, multilines === | ||
{| class="wikitable" | |||
! Feature | |||
! Syntax | |||
! How it looks rendered | |||
|- | |||
| Fractions | |||
| <code>\frac{1}{2}=0.5</code> | |||
| <math>\frac{1}{2}=0.5</math> | |||
|- | |||
| Small Fractions | |||
| <code>\tfrac{1}{2} = 0.5</code> | |||
| <math>\tfrac{1}{2} = 0.5</math> | |||
|- | |||
| Large (normal) Fractions | |||
| <code>\dfrac{k}{k-1} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{1}{2}}} = a </code> | |||
| <math>\dfrac{k}{k-1} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{1}{2}}} = a</math> | |||
|- | |||
| Large (nested) Fractions | |||
| <code>\cfrac{2}{c + \cfrac{2}{d + \cfrac{1}{2}}} = a</code> | |||
| <math>\cfrac{2}{c + \cfrac{2}{d + \cfrac{1}{2}}} = a</math> | |||
|- | |||
| Binomial coefficients | |||
| <code>\binom{n}{k}</code> | |||
| <math>\binom{n}{k}</math> | |||
|- | |||
| Small Binomial coefficients | |||
| <code>\tbinom{n}{k}</code> | |||
| <math>\tbinom{n}{k}</math> | |||
|- | |||
| Large (normal) Binomial coefficients | |||
| <code>\dbinom{n}{k}</code> | |||
| <math>\dbinom{n}{k}</math> | |||
|- | |||
| rowspan="7" | Matrices | |||
| <pre>\begin{matrix} | |||
x & y \\ | |||
z & v | |||
\end{matrix}</pre> | |||
| <math>\begin{matrix} x & y \\ z & v | |||
\end{matrix}</math> | |||
|- | |||
| <pre>\begin{vmatrix} | |||
x & y \\ | |||
z & v | |||
\end{vmatrix}</pre> | |||
| <math>\begin{vmatrix} x & y \\ z & v | |||
\end{vmatrix}</math> | |||
|- | |||
| <pre>\begin{Vmatrix} | |||
x & y \\ | |||
z & v | |||
\end{Vmatrix}</pre> | |||
| <math>\begin{Vmatrix} x & y \\ z & v | |||
\end{Vmatrix}</math> | |||
\end{matrix}</pre | |- | ||
| <pre>\begin{bmatrix} | |||
\end{matrix}</math | 0 & \cdots & 0 \\ | ||
\vdots & \ddots & \vdots \\ | |||
0 & \cdots & 0 | |||
\end{bmatrix}</pre> | |||
| <math>\begin{bmatrix} 0 & \cdots & 0 \\ \vdots | |||
\end{vmatrix}</pre | |||
\end{vmatrix}</math | |||
\end{Vmatrix}</pre | |||
\end{Vmatrix}</math | |||
\end{bmatrix}</pre | |||
& \ddots & \vdots \\ 0 & \cdots & | & \ddots & \vdots \\ 0 & \cdots & | ||
0\end{bmatrix} </math | 0\end{bmatrix} </math> | ||
|- | |||
| <pre>\begin{Bmatrix} | |||
x & y \\ | |||
z & v | |||
\end{Bmatrix}</pre> | |||
| <math>\begin{Bmatrix} x & y \\ z & v | |||
\end{Bmatrix}</pre | \end{Bmatrix}</math> | ||
|- | |||
\end{Bmatrix}</math | | <pre>\begin{pmatrix} | ||
x & y \\ | |||
z & v | |||
\end{pmatrix}</pre> | |||
| <math>\begin{pmatrix} x & y \\ z & v | |||
\end{pmatrix}</math> | |||
|- | |||
\end{pmatrix}</pre | | <pre> | ||
\end{pmatrix}</math | |||
\bigl( \begin{smallmatrix} | \bigl( \begin{smallmatrix} | ||
a&b\\ c&d | |||
\end{smallmatrix} \bigr) | \end{smallmatrix} \bigr) | ||
</pre | </pre> | ||
| <math> | |||
\bigl( \begin{smallmatrix} | \bigl( \begin{smallmatrix} | ||
a&b\\ c&d | |||
\end{smallmatrix} \bigr) | \end{smallmatrix} \bigr) | ||
</math | </math> | ||
|- | |||
| Case distinctions | |||
| <pre> | |||
f(n) = | |||
\begin{cases} | |||
f(n) = | n/2, & \mbox{if }n\mbox{ is even} \\ | ||
\begin{cases} | 3n+1, & \mbox{if }n\mbox{ is odd} | ||
\end{cases}</pre> | |||
| <math>f(n) = | |||
\end{cases}</pre | |||
\begin{cases} | \begin{cases} | ||
n/2, & \mbox{if }n\mbox{ is even} \\ | |||
3n+1, & \mbox{if }n\mbox{ is odd} | |||
\end{cases} </math | \end{cases} </math> | ||
|- | |||
| rowspan="2" | Multiline equations | |||
| <pre> | |||
\begin{align} | \begin{align} | ||
f(x) & = (a+b)^2 \\ | |||
& = a^2+2ab+b^2 \\ | |||
\end{align} | \end{align} | ||
</pre | </pre> | ||
| <math> | |||
\begin{align} | \begin{align} | ||
f(x) & = (a+b)^2 \\ | |||
& = a^2+2ab+b^2 \\ | |||
\end{align} | \end{align} | ||
</math | </math> | ||
|- | |||
| <pre> | |||
\begin{alignat}{2} | \begin{alignat}{2} | ||
f(x) & = (a-b)^2 \\ | |||
& = a^2-2ab+b^2 \\ | |||
\end{alignat} | \end{alignat} | ||
</pre | </pre> | ||
| <math> | |||
\begin{alignat}{2} | \begin{alignat}{2} | ||
f(x) & = (a-b)^2 \\ | |||
& = a^2-2ab+b^2 \\ | |||
\end{alignat} | \end{alignat} | ||
</math | </math> | ||
|- | |||
| Multiline equations <small>(must define number of colums used ({lcr}) <small>(should not be used unless needed)</small></small> | |||
| <pre> | |||
\begin{array}{lcl} | \begin{array}{lcl} | ||
z & = & a \\ | |||
f(x,y,z) & = & x + y + z | |||
\end{array}</pre | \end{array}</pre> | ||
| <math>\begin{array}{lcl} | |||
z & = & a \\ | |||
f(x,y,z) & = & x + y + z | |||
\end{array}</math | \end{array}</math> | ||
|- | |||
| Multiline equations (more) | |||
| <pre> | |||
\begin{array}{lcr} | \begin{array}{lcr} | ||
z & = & a \\ | |||
f(x,y,z) & = & x + y + z | |||
\end{array}</pre | \end{array}</pre> | ||
| <math>\begin{array}{lcr} | |||
z & = & a \\ | |||
f(x,y,z) & = & x + y + z | |||
\end{array}</math | \end{array}</math> | ||
|- | |||
| Breaking up a long expression so that it wraps when necessary. | |||
| <pre><nowiki><math>f(x) = \sum_{n=0}^\infty a_n x^n </math> | |||
<math>= a_0+a_1x+a_2x^2+\cdots</math></nowiki></pre> | |||
| <math>f(x) = \sum_{n=0}^\infty a_n x^n </math><math>= a_0 +a_1x+a_2x^2+\cdots</math> | |||
<nowiki> | |- | ||
<math>f(x) | | Simultaneous equations | ||
| <pre>\begin{cases} | |||
<math>= a_0+a_1x+a_2x^2+\cdots</math> | 3x + 5y + z \\ | ||
</nowiki> | 7x - 2y + 4z \\ | ||
</pre> | -6x + 3y + 2z | ||
\end{cases}</pre> | |||
| <math>\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}</math> | |||
<math>f(x) | |- | ||
| Arrays | |||
| <pre> | |||
\end{cases}</pre | |||
\begin{array}{|c|c||c|} a & b & S \\ | \begin{array}{|c|c||c|} a & b & S \\ | ||
\hline | \hline | ||
Zeile 895: | Zeile 643: | ||
1&1&0\\ | 1&1&0\\ | ||
\end{array} | \end{array} | ||
</pre | </pre> | ||
| <math> | |||
\begin{array}{|c|c||c|} a & b & S \\ | \begin{array}{|c|c||c|} a & b & S \\ | ||
\hline | \hline | ||
Zeile 904: | Zeile 652: | ||
1&1&0\\ | 1&1&0\\ | ||
\end{array} | \end{array} | ||
</math | </math> | ||
|} | |||
=== Parenthesizing big expressions, brackets, bars === | === Parenthesizing big expressions, brackets, bars === | ||
Zeile 961: | Zeile 708: | ||
|- | |- | ||
| Delimiters can be mixed,<br/>as long as \left and \right match | | Delimiters can be mixed,<br/>as long as \left and \right match | ||
| <code><nowiki>\left [ 0,1 \right ) | | <code><nowiki>\left [ 0,1 \right )</code> <br/> <code>\left \langle \psi \right |</nowiki></code> | ||
| <math>\left [ 0,1 \right )</math> <br/> <math>\left \langle \psi \right |</math> | | <math>\left [ 0,1 \right )</math> <br/> <math>\left \langle \psi \right |</math> | ||
|- | |- | ||
Zeile 990: | Zeile 737: | ||
| <math>\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</math> | | <math>\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</math> | ||
|} | |} | ||
== Alphabets and typefaces == | == Alphabets and typefaces == | ||
Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. | |||
For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas. | |||
{|class="wikitable" | {| class="wikitable" | ||
! colspan="2" | Greek alphabet | |||
|- | |- | ||
! | |<code><nowiki>\Alpha \Beta \Gamma \Delta \Epsilon \Zeta</nowiki></code> | ||
|<math>\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!</math> | |||
|- | |- | ||
|<code><nowiki>\ | |<code><nowiki>\Eta \Theta \Iota \Kappa \Lambda \Mu</nowiki></code> | ||
|<math>\ | |<math>\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\ | |<code><nowiki>\Nu \Xi \Pi \Rho \Sigma \Tau</nowiki></code> | ||
|<math>\ | |<math>\Nu \Xi \Pi \Rho \Sigma \Tau\,\!</math> | ||
|- | |- | ||
|<code><nowiki>\ | |<code><nowiki>\Upsilon \Phi \Chi \Psi \Omega</nowiki></code> | ||
|<math>\ | |<math>\Upsilon \Phi \Chi \Psi \Omega \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\ | |<code><nowiki>\alpha \beta \gamma \delta \epsilon \zeta</nowiki></code> | ||
|<math>\ | |<math>\alpha \beta \gamma \delta \epsilon \zeta \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\ | |<code><nowiki>\eta \theta \iota \kappa \lambda \mu</nowiki></code> | ||
|<math>\ | |<math>\eta \theta \iota \kappa \lambda \mu \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\ | |<code><nowiki>\nu \xi \pi \rho \sigma \tau</nowiki></code> | ||
|<math>\ | |<math>\nu \xi \pi \rho \sigma \tau \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\ | |<code><nowiki>\upsilon \phi \chi \psi \omega</nowiki></code> | ||
|<math>\ | |<math>\upsilon \phi \chi \psi \omega \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\ | |<code><nowiki>\varepsilon \digamma \vartheta \varkappa</nowiki></code> | ||
|<math>\ | |<math>\varepsilon \digamma \vartheta \varkappa \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\ | |<code><nowiki>\varpi \varrho \varsigma \varphi</nowiki></code> | ||
|<math>\ | |<math>\varpi \varrho \varsigma \varphi\,\!</math> | ||
|- | |- | ||
| | ! colspan="2" | Blackboard Bold/Scripts | ||
|- | |- | ||
! | |<code><nowiki>\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}</nowiki></code> | ||
|<math>\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!</math> | |||
|- | |- | ||
|<code><nowiki>\mathbb{ | |<code><nowiki>\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}</nowiki></code> | ||
|<math>\mathbb{ | |<math>\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathbb{ | |<code><nowiki>\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}</nowiki></code> | ||
|<math>\mathbb{ | |<math>\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathbb{ | |<code><nowiki>\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}</nowiki></code> | ||
|<math>\mathbb{ | |<math>\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!</math> | ||
|- | |- | ||
|<code><nowiki>\ | | <code><nowiki>\C \N \Q \R \Z</nowiki></code> | ||
|<math>\ | |<math>\C \N \Q \R \Z</math> | ||
|- | |- | ||
!colspan="2"| | ! colspan="2" | boldface (vectors) | ||
|- | |- | ||
|<code><nowiki>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} </nowiki></code> | |<code><nowiki>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}</nowiki></code> | ||
|<math>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \!</math> | |<math>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} </nowiki></code> | |<code><nowiki>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}</nowiki></code> | ||
|<math>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \!</math> | |<math>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} </nowiki></code> | |<code><nowiki>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}</nowiki></code> | ||
|<math>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \!</math> | |<math>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} </nowiki></code> | |<code><nowiki>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}</nowiki></code> | ||
|<math>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \!</math> | |<math>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} </nowiki></code> | |<code><nowiki>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}</nowiki></code> | ||
|<math>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \!</math> | |<math>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} </nowiki></code> | |<code><nowiki>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}</nowiki></code> | ||
|<math>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \!</math> | |<math>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} </nowiki></code> | |<code><nowiki>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}</nowiki></code> | ||
|<math>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \!</math> | |<math>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} </nowiki></code> | |<code><nowiki>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}</nowiki></code> | ||
|<math>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \!</math> | |<math>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} </nowiki></code> | |<code><nowiki>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}</nowiki></code> | ||
|<math>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \!</math> | |<math>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} </nowiki></code> | |<code><nowiki>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}</nowiki></code> | ||
|<math>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} \!</math> | |<math>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!</math> | ||
|- | |- | ||
!colspan="2"| Boldface ( | ! colspan="2" | Boldface (greek) | ||
|- | |- | ||
|<code><nowiki>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} </nowiki></code> | |<code><nowiki>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}</nowiki></code> | ||
|<math>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \!</math> | |<math>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} </nowiki></code> | |<code><nowiki>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}</nowiki></code> | ||
|<math>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} \!</math> | |<math>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!</math> | ||
|- | |- | ||
|<code><nowiki>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} </nowiki></code> | |<code><nowiki>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}</nowiki></code> | ||
|<math>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} \!</math> | |<math>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!</math> | ||
|- | |- | ||
|<code><nowiki>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} </nowiki></code> | |<code><nowiki>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}</nowiki></code> | ||
|<math>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} \!</math> | |<math>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!</math> | ||
|- | |- | ||
|<code><nowiki>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} </nowiki></code> | |<code><nowiki>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}</nowiki></code> | ||
|<math>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} \!</math> | |<math>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!</math> | ||
|- | |- | ||
|<code><nowiki>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} </nowiki></code> | |<code><nowiki>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}</nowiki></code> | ||
|<math>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} \!</math> | |<math>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!</math> | ||
|- | |- | ||
|<code><nowiki>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} </nowiki></code> | |<code><nowiki>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}</nowiki></code> | ||
|<math>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} \!</math> | |<math>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!</math> | ||
|- | |- | ||
|<code><nowiki>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} </nowiki></code> | |<code><nowiki>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}</nowiki></code> | ||
|<math>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} \!</math> | |<math>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!</math> | ||
|- | |- | ||
|<code><nowiki>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\ | |<code><nowiki>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}</nowiki></code> | ||
|<math>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\ | |<math>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\boldsymbol{\ | |<code><nowiki>\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}</nowiki></code> | ||
|<math>\boldsymbol{\ | |<math>\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!</math> | ||
|- | |- | ||
!colspan="2"| Italics | ! colspan="2" | Italics | ||
|- | |- | ||
|<code><nowiki>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} </nowiki></code> | |<code><nowiki>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}</nowiki></code> | ||
|<math>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \!</math> | |<math>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} </nowiki></code> | |<code><nowiki>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}</nowiki></code> | ||
|<math>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \!</math> | |<math>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} </nowiki></code> | |<code><nowiki>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}</nowiki></code> | ||
|<math>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \!</math> | |<math>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} </nowiki></code> | |<code><nowiki>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}</nowiki></code> | ||
|<math>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \!</math> | |<math>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} </nowiki></code> | |<code><nowiki>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}</nowiki></code> | ||
|<math>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \!</math> | |<math>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} </nowiki></code> | |<code><nowiki>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}</nowiki></code> | ||
|<math>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \!</math> | |<math>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} </nowiki></code> | |<code><nowiki>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}</nowiki></code> | ||
|<math>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \!</math> | |<math>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} </nowiki></code> | |<code><nowiki>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}</nowiki></code> | ||
|<math>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \!</math> | |<math>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} </nowiki></code> | |<code><nowiki>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}</nowiki></code> | ||
|<math>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \!</math> | |<math>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} </nowiki></code> | |<code><nowiki>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}</nowiki></code> | ||
|<math>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} \!</math> | |<math>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!</math> | ||
|- | |- | ||
!colspan="2"| Roman typeface | ! colspan="2" | Roman typeface | ||
|- | |- | ||
|<code><nowiki>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} </nowiki></code> | |<code><nowiki>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}</nowiki></code> | ||
|<math>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \!</math> | |<math>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} </nowiki></code> | |<code><nowiki>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}</nowiki></code> | ||
|<math>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \!</math> | |<math>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} </nowiki></code> | |<code><nowiki>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}</nowiki></code> | ||
|<math>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \!</math> | |<math>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} </nowiki></code> | |<code><nowiki>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}</nowiki></code> | ||
|<math>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \!</math> | |<math>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} </nowiki></code> | |<code><nowiki>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}</nowiki></code> | ||
|<math>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} \!</math> | |<math>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} </nowiki></code> | |<code><nowiki>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}</nowiki></code> | ||
|<math>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \!</math> | |<math>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} </nowiki></code> | |<code><nowiki>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}</nowiki></code> | ||
|<math>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \!</math> | |<math>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} </nowiki></code> | |<code><nowiki>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}</nowiki></code> | ||
|<math>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \!</math> | |<math>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} </nowiki></code> | |<code><nowiki>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}</nowiki></code> | ||
|<math>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \!</math> | |<math>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} </nowiki></code> | |<code><nowiki>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}</nowiki></code> | ||
|<math>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} \!</math> | |<math>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!</math> | ||
|- | |- | ||
!colspan="2"| Fraktur typeface | ! colspan="2" | Fraktur typeface | ||
|- | |- | ||
|<code><nowiki>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} </nowiki></code> | |<code><nowiki>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}</nowiki></code> | ||
|<math>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \!</math> | |<math>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} </nowiki></code> | |<code><nowiki>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}</nowiki></code> | ||
|<math>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \!</math> | |<math>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} </nowiki></code> | |<code><nowiki>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}</nowiki></code> | ||
|<math>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \!</math> | |<math>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} </nowiki></code> | |<code><nowiki>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}</nowiki></code> | ||
|<math>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \!</math> | |<math>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} </nowiki></code> | |<code><nowiki>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}</nowiki></code> | ||
|<math>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \!</math> | |<math>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} </nowiki></code> | |<code><nowiki>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}</nowiki></code> | ||
|<math>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \!</math> | |<math>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} </nowiki></code> | |<code><nowiki>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}</nowiki></code> | ||
|<math>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \!</math> | |<math>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} </nowiki></code> | |<code><nowiki>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}</nowiki></code> | ||
|<math>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \!</math> | |<math>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} </nowiki></code> | |<code><nowiki>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}</nowiki></code> | ||
|<math>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \!</math> | |<math>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} </nowiki></code> | |<code><nowiki>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}</nowiki></code> | ||
|<math>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} \!</math> | |<math>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!</math> | ||
|- | |- | ||
!colspan="2"| Calligraphy/ | ! colspan="2" | Calligraphy/Script | ||
|- | |- | ||
|<code><nowiki>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} </nowiki></code> | |<code><nowiki>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}</nowiki></code> | ||
|<math>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \!</math> | |<math>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} </nowiki></code> | |<code><nowiki>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}</nowiki></code> | ||
|<math>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \!</math> | |<math>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} </nowiki></code> | |<code><nowiki>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}</nowiki></code> | ||
|<math>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \!</math> | |<math>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!</math> | ||
|- | |- | ||
|<code><nowiki>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} </nowiki></code> | |<code><nowiki>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}</nowiki></code> | ||
|<math>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} \!</math> | |<math>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!</math> | ||
|- | |- | ||
!colspan="2"| Hebrew | ! colspan="2" | Hebrew | ||
|- | |- | ||
|<code><nowiki>\aleph \beth \gimel \daleth </nowiki></code> | |<code><nowiki>\aleph \beth \gimel \daleth</nowiki></code> | ||
|<math>\aleph \beth \gimel \daleth \!</math> | |<math>\aleph \beth \gimel \daleth\,\!</math> | ||
|} | |} | ||
{|class="wikitable" | {| class="wikitable" | ||
! Feature | ! Feature | ||
! Syntax | ! Syntax | ||
!colspan="2"| How it looks rendered | ! colspan="2" | How it looks rendered | ||
|- | |- | ||
| | | non-italicised characters | ||
|<code>\ | | <code><nowiki>\mbox{abc}</nowiki></code> | ||
|<math>\ | | <math>\mbox{abc}</math> | ||
|<math>\ | | <math>\mbox{abc} \,\!</math> | ||
|- | |- | ||
| | | mixed italics (bad) | ||
|<code>\ | | <code><nowiki>\mbox{if} n \mbox{is even}</nowiki></code> | ||
|<math>\ | | <math>\mbox{if} n \mbox{is even}</math> | ||
|<math>\ | | <math>\mbox{if} n \mbox{is even} \,\!</math> | ||
|- | |- | ||
| | | mixed italics (good) | ||
|<code>\ | | <code><nowiki>\mbox{if }n\mbox{ is even}</nowiki></code> | ||
|<math>\ | | <math>\mbox{if }n\mbox{ is even}</math> | ||
|<math>\ | | <math>\mbox{if }n\mbox{ is even} \,\!</math> | ||
|- | |- | ||
| | | mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) | ||
|<code>\ | | <code><nowiki>\mbox{if}~n\ \mbox{is even}</nowiki></code> | ||
|<math>\ | | <math>\mbox{if}~n\ \mbox{is even}</math> | ||
|<math>\ | | <math>\mbox{if}~n\ \mbox{is even} \,\!</math> | ||
|} | |} | ||
Zeile 1.285: | Zeile 1.009: | ||
*:<math>x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}</math> | *:<math>x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}</math> | ||
{| class= | It is also possible to change the background color, as in the following example: | ||
{| class=wikitable | |||
|- | |- | ||
! Background | |||
! Wikicode | |||
! Rendering (in PNG) | |||
|- | |- | ||
| | ! rowspan=2 | White | ||
| <code>e^{i \pi} + 1 = 0</code> | |||
| <math>e^{i \pi} + 1 = 0\,\!</math> | |||
|- | |- | ||
| < | | <code>'''\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}'''e^{i \pi} + 1 = 0</code> | ||
| <math>\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0\,\!</math></span> | |||
|- | |- | ||
| | ! rowspan=2 | Orange | ||
| <code>e^{i \pi} + 1 = 0</code> | |||
| style="background-color:orange;" | <math>e^{i \pi} + 1 = 0\,\!</math> | |||
|- | |- | ||
| < | | <code>'''\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}'''e^{i \pi} + 1 = 0</code> | ||
| style="background-color:orange;" | <math>\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0\,\!</math> | |||
|} | |} | ||
Note that color should not be used as the ''only'' way to identify something, because it will become meaningless on black-and-white media or for color-blind people | See here for [http://oregonstate.edu/%7Epeterseb/tex/samples/docs/color-package-demo.pdf all named colors] supported by LaTeX. | ||
Note that color should not be used as the ''only'' way to identify something, because it will become meaningless on black-and-white media or for color-blind people. | |||
== Formatting issues == | == Formatting issues == | ||
=== Spacing === | === Spacing === | ||
Note that TeX handles most spacing automatically, but you may sometimes want manual control. | Note that TeX handles most spacing automatically, but you may sometimes want manual control. | ||
{| border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;" | |||
! Feature | |||
! Syntax | |||
! How it looks rendered | |||
|- | |||
| double quad space | |||
| <code><nowiki>a \qquad b</nowiki></code> | |||
| <math>a \qquad b</math> | |||
|- | |||
| quad space | |||
| <code><nowiki>a \quad b</nowiki></code> | |||
| <math>a \quad b</math> | |||
|- | |||
| text space | |||
| <code><nowiki>a\ b</nowiki></code> | |||
| <math>a\ b</math> | |||
|- | |||
| text space without PNG conversion | |||
| <code><nowiki>a \mbox{ } b</nowiki></code> | |||
| <math>a \mbox{ } b</math> | |||
|- | |||
| large space | |||
| <code><nowiki>a\;b</nowiki></code> | |||
| <math>a\;b</math> | |||
|- | |||
| medium space | |||
| <code><nowiki>a\>b</nowiki></code> | |||
| [not supported] | |||
|- | |||
| small space | |||
| <code><nowiki>a\,b</nowiki></code> | |||
| <math>a\,b</math> | |||
|- | |||
| no space | |||
| <code><nowiki>ab</nowiki></code> | |||
| <math>ab\,</math> | |||
|- | |||
| small negative space | |||
| <code><nowiki>a\!b</nowiki></code> | |||
| <math>a\!b</math> | |||
|} | |} | ||
Automatic spacing may be broken in very long expressions (because they produce an overfull hbox in TeX): | Automatic spacing may be broken in very long expressions (because they produce an overfull hbox in TeX): | ||
:<nowiki><math>0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots</math></nowiki> | :<code><nowiki><math>0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots</math></nowiki></code> | ||
:<math>0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots</math> | :<math>0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots</math> | ||
This can be remedied by putting a pair of braces { } around the whole expression: | This can be remedied by putting a pair of braces { } around the whole expression: | ||
:<nowiki><math>{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}</math></nowiki> | :<code><nowiki><math>{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}</math></nowiki></code> | ||
:<math>{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}</math> | :<math>{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}</math> | ||
=== Alignment with normal text flow === | === Alignment with normal text flow === | ||
Due to the default | Due to the default css | ||
< | <pre>img.tex { vertical-align: middle; }</pre> | ||
an inline expression like <math>\int_{-N}^{N} e^x\, dx</math> should look good. | an inline expression like <math>\int_{-N}^{N} e^x\, dx</math> should look good. | ||
If you need to align it otherwise, use <code><nowiki><math style="vertical-align:-100%;">...</math></nowiki></code> and play with the <code>vertical-align</code> argument until you get it right | If you need to align it otherwise, use <code><nowiki><math style="vertical-align:-100%;">...</math></nowiki></code> and play with the <code>vertical-align</code> argument until you get it right; however, how it looks may depend on the browser and the browser settings. | ||
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all. | Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all. | ||
Zeile 1.400: | Zeile 1.101: | ||
=== Forced PNG rendering === | === Forced PNG rendering === | ||
To force the formula to render as PNG, add <code>\,</code> (small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in [[Help:Preferences|preferences]]). | To force the formula to render as PNG, add <code>\,</code> (small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in [[Help:Preferences|preferences]]). | ||
You can also use <code>\,\!</code> (small space and negative space, which cancel out) anywhere inside the math tags. This ''does'' force PNG even in "HTML if possible" mode, unlike <code>\,</code>. | You can also use <code>\,\!</code> (small space and negative space, which cancel out) anywhere inside the math tags. This ''does'' force PNG even in "HTML if possible" mode, unlike <code>\,</code>. | ||
This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above). | This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above). | ||
Zeile 1.408: | Zeile 1.109: | ||
For instance: | For instance: | ||
< | {| border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;" | ||
< | ! Syntax | ||
< | ! How it looks rendered | ||
</ | |- | ||
| <code><nowiki>a^{c+2}</nowiki></code> | |||
| <math>a^{\,\!c+2}</math> | |||
|- | |||
| <code><nowiki>a^{c+2} \,</nowiki></code> | |||
| <math>a^{c+2} \,</math> | |||
|- | |||
| <code><nowiki>a^{\,\!c+2}</nowiki></code> | |||
| <math>a^{\,\!c+2}</math> | |||
|- | |||
| <code><nowiki>a^{b^{c+2}}</nowiki></code> | |||
| <math>a^{b^{c+2}}</math> (WRONG with option "HTML if possible or else PNG"!) | |||
|- | |||
| <code><nowiki>a^{b^{c+2}} \,</nowiki></code> | |||
| <math>a^{b^{c+2}} \,</math> (WRONG with option "HTML if possible or else PNG"!) | |||
|- | |||
| <code><nowiki>a^{b^{c+2}}\approx 5</nowiki></code> | |||
| <math>a^{b^{c+2}}\approx 5</math> (due to "<math>\approx</math>" correctly displayed, no code "\,\!" needed) | |||
|- | |||
| <code><nowiki>a^{b^{\,\!c+2}}</nowiki></code> | |||
| <math>a^{b^{\,\!c+2}}</math> | |||
|- | |||
| <code><nowiki>\int_{-N}^{N} e^x\, dx</nowiki></code> | |||
| <math>\int_{-N}^{N} e^x\, dx</math> | |||
|} | |||
This has been tested with most of the formulae on this page, and seems to work perfectly. | This has been tested with most of the formulae on this page, and seems to work perfectly. | ||
Zeile 1.461: | Zeile 1.144: | ||
You might want to include a comment in the HTML so people don't "correct" the formula by removing it: | You might want to include a comment in the HTML so people don't "correct" the formula by removing it: | ||
:''<nowiki><!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.--></nowiki>'' | :''<nowiki><!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.--></nowiki>'' | ||
== Commutative diagrams == | == Commutative diagrams == | ||
To make a | To make a commutative diagram, there are three steps: | ||
* Write the diagram in TeX | |||
* Convert to SVG | |||
* Upload the file | |||
=== Diagrams in TeX === | === Diagrams in TeX === | ||
'''Xy-pic''' ([http://tex.loria.fr/graph-pack/doc-xypic/xyguide-html/xyguide-html.html online manual]) is the most powerful and general-purpose diagram package in TeX]. | |||
Simpler packages include: | Simpler packages include: | ||
* | * AMS's [http://www.dante.de/CTAN//help/Catalogue/entries/amscd.html amscd] | ||
* Paul Taylor's [http://www.ctan.org/tex-archive/macros/generic/diagrams/taylor/ diagrams] | * Paul Taylor's [http://www.ctan.org/tex-archive/macros/generic/diagrams/taylor/ diagrams] | ||
* François Borceux [http://www.ctan.org/tex-archive/help/Catalogue/entries/borceux.html Diagrams] | * François Borceux [http://www.ctan.org/tex-archive/help/Catalogue/entries/borceux.html Diagrams] | ||
The following is a template for Xy-pic, together with a | The following is a template for Xy-pic, together with a hack to increase the margins in dvips, so that the diagram is not truncated by over-eager cropping | ||
(suggested in | (suggested in TUGboat [http://www.tug.org/TUGboat/Articles/tb17-3/tb52rahtz.pdf TUGboat, Volume 17 1996, No. 3]): | ||
<pre> | <pre> | ||
\documentclass{amsart} | \documentclass{amsart} | ||
\usepackage[all, ps | \usepackage[all, ps]{xy} % Loading the XY-Pic package | ||
% Using postscript driver for smoother curves | |||
\usepackage{color} % For invisible frame | \usepackage{color} % For invisible frame | ||
\begin{document} | \begin{document} | ||
\thispagestyle{empty} % No page numbers | \thispagestyle{empty} % No page numbers | ||
\SelectTips{eu}{} % Euler arrowheads (tips) | \SelectTips{eu}{} % Euler arrowheads (tips) | ||
\setlength{\fboxsep}{0pt} % Frame box margin | \setlength{\fboxsep}{0pt} % Frame box margin | ||
{\color{white}\framebox{{\color{black}$$ % Frame for margin | {\color{white}\framebox{{\color{black}$$ % Frame for margin | ||
Zeile 1.505: | Zeile 1.188: | ||
pdfcrop --clip file.pdf tmp.pdf | pdfcrop --clip file.pdf tmp.pdf | ||
pdf2svg tmp.pdf file.svg | pdf2svg tmp.pdf file.svg | ||
(rm tmp.pdf at the end) | (rm tmp.pdf at the end) | ||
</pre> | </pre> | ||
pdflatex and the [http://pdfcrop.sourceforge.net pdfcrop] and [http://www.cityinthesky.co.uk/pdf2svg.html pdf2svg] utilities are needed for this procedure. | |||
If you do not have | If you do not have these programs, you can also use the commands | ||
<pre> | <pre> | ||
Zeile 1.515: | Zeile 1.199: | ||
</pre> | </pre> | ||
to get a PDF version of your diagram | to get a PDF version of your diagram. | ||
In general, you will not be able to get anywhere with diagrams without TeX and Ghostscript, and the <code>inkscape</code> program is a useful tool for creating or modifying your diagrams by hand. There is also a utility <code>pstoedit</code> which supports direct conversion from Postscript files to many vector graphics formats, but it requires a non-free plugin to convert to SVG, and regardless of the format, | ==== Programs ==== | ||
In general, you will not be able to get anywhere with diagrams without TeX and Ghostscript, and the <code>inkscape</code> program is a useful tool for creating or modifying your diagrams by hand. There is also a utility <code>pstoedit</code> which supports direct conversion from Postscript files to many vector graphics formats, but it requires a non-free plugin to convert to SVG, and regardless of the format, this editor has not been successful in using it to convert diagrams with diagonal arrows from TeX-created files. | |||
These programs are: | These programs are: | ||
* a working TeX distribution, such as | * a working TeX distribution, such as TeX Live | ||
* | * Ghostscript | ||
* | * pstoedit | ||
* | * Inkscape | ||
=== Upload the file === | === Upload the file === | ||
As the diagram is your own work, upload it to | As the diagram is your own work, upload it to the Repository, so that all Wikis can use it without having to copy it to their language's Wiki. | ||
;Check size: Before uploading, check that the default size of the image is neither too large nor too small by opening in an | ;Check size: Before uploading, check that the default size of the image is neither too large nor too small by opening in an SVG application and viewing at default size (100% scaling), otherwise adjust the <tt>-y</tt> option to <tt>dvips</tt>. | ||
;Name: Make sure the file has a | ;Name: Make sure the file has a meaningful name. | ||
;Upload: | ;Upload: Login to the Repository, then upload the file for the '''Summary''', give a brief description. | ||
Now go to the | Now go to the image page and add a description: | ||
* Include the complete <tt>.tex</tt> file, not just the fragment, so future editors do not need to reconstruct a compilable file. | * Include the complete <tt>.tex</tt> file, not just the fragment, so future editors do not need to reconstruct a compilable file. | ||
;License: The most common license for commutative diagrams is PD-self; some use other licenses. Please ''do not'' use the GFDL, as it requires the entire text of the GFDL to be attached to any document that uses the diagram. | |||
;License: The most common license for commutative diagrams is | ;Description: If possible, link to a SaltWiki page relevant to the diagram. | ||
;Description: If possible, link to a | ;Category: Include <tt><nowiki>[[Category:Commutative diagrams]]</nowiki></tt>. There are also subcategories, which you may choose to use. | ||
;Category: Include <tt><nowiki>[[Category:Commutative diagrams]]</nowiki></tt> | |||
;Include image: Now include the image on the original page via <tt><nowiki>[[Image:Diagram.svg]]</nowiki></tt> | ;Include image: Now include the image on the original page via <tt><nowiki>[[Image:Diagram.svg]]</nowiki></tt> | ||
Zeile 1.563: | Zeile 1.229: | ||
A sample conforming diagram is [[commons:Image:PSU-PU.svg]]. | A sample conforming diagram is [[commons:Image:PSU-PU.svg]]. | ||
== Examples == | |||
== Examples | |||
<center> | <center> | ||
===Quadratic | ===Quadratic Polynomial=== | ||
<math>ax^2 + bx + c = 0</math> | <math>ax^2 + bx + c = 0</math> | ||
<nowiki><math>ax^2 + bx + c = 0</math></nowiki> | <nowiki><math>ax^2 + bx + c = 0</math></nowiki> | ||
===Quadratic | ===Quadratic Polynomial (Force PNG Rendering)=== | ||
<math>ax^2 + bx + c = 0\,\!</math> | <math>ax^2 + bx + c = 0\,\!</math> | ||
<nowiki><math>ax^2 + bx + c = 0\,\!</math></nowiki> | <nowiki><math>ax^2 + bx + c = 0\,\!</math></nowiki> | ||
===Quadratic | ===Quadratic Formula=== | ||
<math>x={-b\pm\sqrt{b^2-4ac} | <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math> | ||
<nowiki><math>x={-b\pm\sqrt{b^2-4ac} | <nowiki><math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math></nowiki> | ||
===Tall | ===Tall Parentheses and Fractions === | ||
<math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math> | <math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math> | ||
Zeile 1.635: | Zeile 1.266: | ||
===Summation=== | ===Summation=== | ||
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}</math> | <math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}</math> | ||
Zeile 1.644: | Zeile 1.271: | ||
{3^m\left(m\,3^n+n\,3^m\right)}</math></nowiki> | {3^m\left(m\,3^n+n\,3^m\right)}</math></nowiki> | ||
=== Differential | === Differential Equation === | ||
<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math> | <math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math> | ||
Zeile 1.661: | Zeile 1.288: | ||
<nowiki><math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math></nowiki> | <nowiki><math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math></nowiki> | ||
===Integral | ===Integral Equation=== | ||
<math>\phi_n(\kappa) | <math>\phi_n(\kappa) | ||
= \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math> | = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math> | ||
<nowiki><math>\phi_n(\kappa) = | <nowiki><math>\phi_n(\kappa) = | ||
Zeile 1.680: | Zeile 1.307: | ||
===Continuation and cases=== | ===Continuation and cases=== | ||
<math>f(x) = \begin{cases}1 & -1 \le x < 0 \\ | <math>f(x) = \begin{cases}1 & -1 \le x < 0 \\ | ||
\frac{1}{2} & x = 0 \\ 1 - x^2 & \ | \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise}\end{cases}</math> | ||
<nowiki><math> | <nowiki><math> | ||
Zeile 1.687: | Zeile 1.314: | ||
1 & -1 \le x < 0 \\ | 1 & -1 \le x < 0 \\ | ||
\frac{1}{2} & x = 0 \\ | \frac{1}{2} & x = 0 \\ | ||
1 - x^2 & \ | 1 - x^2 & \mbox{otherwise} | ||
\end{cases} | \end{cases} | ||
</math></nowiki> | </math></nowiki> | ||
Zeile 1.700: | Zeile 1.327: | ||
===Fraction and small fraction=== | ===Fraction and small fraction=== | ||
<math>\frac{a}{b} | <math> \frac {a}{b}</math>   <math> \tfrac {a}{b} </math> | ||
<nowiki><math>\frac{a}{b}\ \tfrac{a}{b}</math></nowiki> | <nowiki><math> \frac {a}{b}\ \tfrac {a}{b} </math></nowiki> | ||
</center> | |||
== | ==Bug reports== | ||
Discussions, bug reports and feature requests should go to the Wikitech-l mailing list. These can also be filed on [[Bugzilla:|Mediazilla]] under ''MediaWiki extensions''. | |||
== | ==Future== | ||
In the future, as more browsers are smarter, it will be able to generate enhanced HTML or even [[w:MathML|MathML]] in many cases. (See [[mw:blahtex|blahtex]] for information about current work on adding MathML support.) | |||
</ | ==Notes== | ||
<references/> | |||
== | == External links == | ||
*[ | *[http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/ A LaTeX tutorial]. | ||
*[ | *A [http://www.ctan.org/tex-archive/info/gentle/gentle.pdf paper introducing TeX]—see page 39 onwards for a good introduction to the maths side of things. | ||
*[ | *A [http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf paper introducing LaTeX]—skip to page 49 for the math section. See page 63 for a complete reference list of symbols included in LaTeX and AMS-LaTeX. | ||
* [http://tug.ctan.org/tex-archive/info/symbols/comprehensive/symbols-letter.pdf The Comprehensive LaTeX Symbol List] | *[http://tug.ctan.org/tex-archive/info/symbols/comprehensive/symbols-letter.pdf The Comprehensive LaTeX Symbol List]. | ||
* [http://www.ams.org/tex/amslatex.html AMS-LaTeX guide]. | *[http://www.ams.org/tex/amslatex.html AMS-LaTeX guide]. | ||
* [http://us.metamath.org/symbols/symbols.html A set of public domain fixed-size math symbol bitmaps]. | *[http://us.metamath.org/symbols/symbols.html A set of public domain fixed-size math symbol bitmaps]. | ||
* MathML: A product of the [[W3C]] [http://www.w3.org/Math/ Math working group], is a low-level specification for describing mathematics as a basis for machine to machine communication. | *MathML: A product of the [[w:W3C|W3C]] [http://www.w3.org/Math/ Math working group], is a low-level specification for describing mathematics as a basis for machine to machine communication. | ||
{{languages|help:Latex}} | {{languages|help:Latex}} | ||
[[Kategorie:Help/de]] | [[Kategorie:Help/de]][[category:Review]] |
Aktuelle Version vom 2. Juli 2012, 15:00 Uhr
Text modified from Wikipedia[1]. It is under the Creative Commons Attribution-ShareAlike License; additional terms may apply.
MediaWiki uses a subset of TeX markup, including some extensions from LaTeX and AMS-LaTeX, for mathematical formulae. It generates either PNG images or simple HTML markup, depending on user preferences and the complexity of the expression.
More precisely, MediaWiki filters the markup through Texvc, which in turn passes the commands to TeX for the actual rendering. Thus, only a limited part of the full TeX language is supported; see below for details.
Technicals
Syntax
Traditionally, math markup goes inside the XML-style tag math: <math> ... </math>
. The old Edit toolbar has a button for this.
However, one can also use parser function {{#tag:math|...}}
; this is more versatile: the wikitext at the dots is first expanded before interpreting the result as TeX code. Thus it can contain parameters, variables, parser functions and templates. Note however that with this syntax double braces in the TeX code must have a space in between, to avoid confusion with their use in template calls etc. Also, to produce the character "|" inside the TeX code, use {{!}}.[2]
In TeX, as in HTML, extra spaces and newlines are ignored.
Rendering
The PNG images are black on white (not transparent). These colors, as well as font sizes and types, are independent of browser settings or CSS. Font sizes and types will often deviate from what HTML renders. Vertical alignment with the surrounding text can also be a problem. The css selector of the images is img.tex
.
It should be pointed out that solutions to most of these shortcomings have been proposed by Maynard Handley, but have not been implemented yet.
The alt
attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the <math>
and </math>
.
Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use \text
, \mbox
, or \mathrm
. You can also define new function names using \operatorname{...}
. For example, <math>\text{abc}</math>
gives Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \text{abc}}
. This does not work for special characters, they are ignored unless the whole <math> expression is rendered in HTML:
- <math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}</math>
- <math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}\,</math>
gives:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}\,}
See bug 798 for details.
Nevertheless, using \mbox
instead of \text
, more characters are allowed
For example,
- <math>\mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ}</math>
- <math>\mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ}\,</math>
gives:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ}}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ}\,}
But \mbox{ð}
and \mbox{þ}
will give an error:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mbox {ð}}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mbox {þ}}
TeX vs HTML
Before introducing TeX markup for producing special characters, it should be noted that, as this comparison table shows, sometimes similar results can be achieved in HTML.
TeX Syntax (forcing PNG) | TeX Rendering | HTML Syntax | HTML Rendering |
---|---|---|---|
<math>\alpha\,\!</math>
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha\,\!} | {{math|<VAR>α</VAR>}}
|
Vorlage:Math |
<math>\sqrt{2}</math>
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2}} | {{math|{{radical|2}}}}
|
Vorlage:Math |
<math>\sqrt{1-e^2}</math>
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{1-e^2}\!} | {{math|{{radical|1 − ''e''²}}}}
|
Vorlage:Math |
The codes on the left produce the symbols on the right, but the latter can also be put directly in the wikitext, except for ‘=’.
Syntax | Rendering |
---|---|
α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω Γ Δ Θ Λ Ξ Π Σ Φ Ψ Ω |
α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω Γ Δ Θ Λ Ξ Π Σ Φ Ψ Ω |
∫ ∑ ∏ √ − ± ∞ ≈ ∝ {{=}} ≡ ≠ ≤ ≥ × · ÷ ∂ ′ ″ ∇ ‰ ° ∴ Ø ø ∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇ ¬ ∧ ∨ ∃ ∀ ⇒ ⇔ → ↔ ↑ ℵ - – — |
∫ ∑ ∏ √ − ± ∞ ≈ ∝ = ≡ ≠ ≤ ≥ × · ÷ ∂ ′ ″ ∇ ‰ ° ∴ Ø ø ∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇ ¬ ∧ ∨ ∃ ∀ ⇒ ⇔ → ↔ ↑ ℵ - – — |
The use of HTML instead of TeX is still under discussion. The arguments either way can be summarised as follows.
Pros of HTML
- In-line HTML formulae always align properly with the rest of the HTML text.
- The formula’s background and font size match the rest of HTML contents and the appearance respects CSS and browser settings while the typeface is conveniently altered to help you identify formulae.
- Pages using HTML code for formulae will load faster and they will create less clutter on your hard disk.
- Formulae typeset with HTML code will be accessible to client-side script links (a.k.a. scriptlets).
- The display of a formula entered using mathematical templates can be conveniently altered by modifying the templates involved; this modification will affect all relevant formulae without any manual intervention.
- The HTML code, if entered diligently, will contain all semantic information to transform the equation back to TeX or any other code as needed. It can even contain differences TeX does not normally catch, e.g.
{{math|''i''}}
for the imaginary unit and{{math|<VAR>i</VAR>}}
for an arbitrary index variable.
Pros of TeX
- TeX is semantically superior to HTML. In TeX, "
<math>x</math>
" means "mathematical variable Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} ", whereas in HTML "x
" could mean anything. Information has been irrevocably lost. - On the other hand, if you encode the same formula as "
{{math|<VAR>x</VAR>}}
", you get the same visual result and no information is lost. This requires diligence and more typing that could make the formula harder to understand as you type it. However, since there are far more readers than editors, this effort is worth considering. - TeX has been specifically designed for typesetting formulae, so input is easier and more natural if you are accustomed to it, and output is more aesthetically pleasing if you focus on a single formula rather than on the whole containing page.
- One consequence of point 1 is that TeX code can be transformed into HTML, but not vice-versa. This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It is true that the current situation is not ideal, but that is not a good reason to drop information/contents. It is more a reason to help improve the situation.
- Another consequence of point 1 is that TeX can be converted to MathML for browsers which support it, thus keeping its semantics and allowing the rendering to be better suited for the reader’s graphic device.
- When writing in TeX, editors need not worry about whether this or that version of this or that browser supports this or that HTML entity. The burden of these decisions is put on the software. This does not hold for HTML formulae, which can easily end up being rendered wrongly or differently from the editor’s intentions on a different browser.
- More importantly, the serif font used for rendering formulae is browser-dependent and it may be missing some important glyphs. While the browser generally capable to substitute a matching glyph from a different font family, it need not be the case for combined glyphs.
- TeX is the preferred text formatting language of most professional mathematicians, scientists, and engineers. It is easier to persuade them to contribute if they can write in TeX.
Functions, symbols, special characters
Accents/diacritics | |
---|---|
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!} |
\check{a} \bar{a} \ddot{a} \dot{a}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \check{a} \bar{a} \ddot{a} \dot{a}\!} |
Standard functions | |
\sin a \cos b \tan c
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sin a \cos b \tan c\!} |
\sec d \csc e \cot f
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sec d \csc e \cot f\,\!} |
\arcsin h \arccos i \arctan j
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \arcsin h \arccos i \arctan j\,\!} |
\sinh k \cosh l \tanh m \coth n\!
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sinh k \cosh l \tanh m \coth n\!} |
\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!} |
\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t\,\!} |
\lim u \limsup v \liminf w \min x \max y\!
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim u \limsup v \liminf w \min x \max y\!} |
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!} |
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \deg h \gcd i \Pr j \det k \hom l \arg m \dim n\!} |
Modular arithmetic | |
s_k \equiv 0 \pmod{m}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s_k \equiv 0 \pmod{m}\,\!} |
a\,\bmod\,b
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\,\bmod\,b\,\!} |
Derivatives | |
\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}} |
Sets | |
\forall \exists \empty \emptyset \varnothing
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall \exists \empty \emptyset \varnothing\,\!} |
\in \ni \not \in \notin \subset \subseteq \supset \supseteq
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!} |
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!} |
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!} |
Operators | |
+ \oplus \bigoplus \pm \mp -
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle + \oplus \bigoplus \pm \mp - \,\!} |
\times \otimes \bigotimes \cdot \circ \bullet \bigodot
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!} |
\star * / \div \frac{1}{2}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \star * / \div \frac{1}{2}\,\!} |
Logic | |
\land (or \and) \wedge \bigwedge \bar{q} \to p
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \land \wedge \bigwedge \bar{q} \to p\,\!} |
\lor \vee \bigvee \lnot \neg q \And
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lor \vee \bigvee \lnot \neg q \And\,\!} |
Root | |
\sqrt{2} \sqrt[n]{x}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2} \sqrt[n]{x}\,\!} |
Relations | |
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\,\!} |
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!} |
\geqq \geqslant \eqslantgtr \gtrsim \gtrapprox
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox} |
Geometric | |
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!} |
Arrows | |
\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \leftarrow \rightarrow \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\!} |
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff)
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \!} |
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow \!} |
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!} |
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,\!} |
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!} |
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,\!} |
Special | |
\And \eth \S \P \% \dagger \ddagger \ldots \cdots
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \And \eth \S \P \% \dagger \ddagger \ldots \cdots\,\!} |
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!} |
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!} |
\ell \mho \Finv \Re \Im \wp \complement
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ell \mho \Finv \Re \Im \wp \complement\,\!} |
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!} |
Unsorted (new stuff) | |
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown} |
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge\!} |
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes} |
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant} |
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq} |
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft} |
\Vvdash \bumpeq \Bumpeq \eqsim \gtrdot
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Vvdash \bumpeq \Bumpeq \eqsim \gtrdot} |
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq} |
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork} |
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq} |
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid} |
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr} |
\subsetneq
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \subsetneq} |
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq} |
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq} |
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq} |
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!} |
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!} |
\dashv \asymp \doteq \parallel
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dashv \asymp \doteq \parallel\,\!} |
\ulcorner \urcorner \llcorner \lrcorner
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ulcorner \urcorner \llcorner \lrcorner} |
Larger expressions
Subscripts, superscripts, integrals
Feature | Syntax | How it looks rendered | |
---|---|---|---|
HTML | PNG | ||
Superscript | a^2 |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^2} | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^2 \,\!} |
Subscript | a_2 |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_2} | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_2 \,\!} |
Grouping | a^{2+2} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{2+2}} | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{2+2}\,\!} |
a_{i,j} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_{i,j}} | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_{i,j}\,\!} | |
Combining sub & super without and with horizontal separation | x_2^3 |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2^3} | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2^3 \,\!} |
{x_2}^3 |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {x_2}^3} | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {x_2}^3 \,\!} | |
Super super | 10^{10^{ \,\!{8} } |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 10^{10^{ \,\! 8 } }} | |
Super super | 10^{10^{ \overset{8}{} }} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 10^{10^{ \overset{8}{} }}} | |
Super super (wrong in HTML in some browsers) | 10^{10^8} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 10^{10^8}} | |
Preceding and/or Additional sub & super | \sideset{_1^2}{_3^4}\prod_a^b |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sideset{_1^2}{_3^4}\prod_a^b} | |
{}_1^2\!\Omega_3^4 |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {}_1^2\!\Omega_3^4} | ||
Stacking | \overset{\alpha}{\omega} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overset{\alpha}{\omega}} | |
\underset{\alpha}{\omega} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underset{\alpha}{\omega}} | ||
\overset{\alpha}{\underset{\gamma}{\omega}} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overset{\alpha}{\underset{\gamma}{\omega}}} | ||
\stackrel{\alpha}{\omega} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \stackrel{\alpha}{\omega}} | ||
Derivative (forced PNG) | x', y'', f', f''\! |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x', y'', f', f''\!} | |
Derivative (f in italics may overlap primes in HTML) | x', y'', f', f'' |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x', y'', f', f''} | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x', y'', f', f''\!} |
Derivative (wrong in HTML) | x^\prime, y^{\prime\prime} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^\prime, y^{\prime\prime}} | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^\prime, y^{\prime\prime}\,\!} |
Derivative (wrong in PNG) | x\prime, y\prime\prime |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\prime, y\prime\prime} | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\prime, y\prime\prime\,\!} |
Derivative dots | \dot{x}, \ddot{x} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot{x}, \ddot{x}} | |
Underlines, overlines, vectors | \hat a \ \bar b \ \vec c |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat a \ \bar b \ \vec c} | |
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}} | ||
\overline{g h i} \ \underline{j k l} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{g h i} \ \underline{j k l}} | ||
\not 1 \ \cancel{123} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \not 1 \ \cancel{123}} | ||
Arrows | A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C} | |
Overbraces | \overbrace{ 1+2+\cdots+100 }^{5050} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overbrace{ 1+2+\cdots+100 }^{5050}} | |
Underbraces | \underbrace{ a+b+\cdots+z }_{26} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underbrace{ a+b+\cdots+z }_{26}} | |
Sum | \sum_{k=1}^N k^2 |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{k=1}^N k^2} | |
Sum (force \textstyle ) |
\textstyle \sum_{k=1}^N k^2 |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \sum_{k=1}^N k^2} | |
Product | \prod_{i=1}^N x_i |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \prod_{i=1}^N x_i} | |
Product (force \textstyle ) |
\textstyle \prod_{i=1}^N x_i |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \prod_{i=1}^N x_i} | |
Coproduct | \coprod_{i=1}^N x_i |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \coprod_{i=1}^N x_i} | |
Coproduct (force \textstyle ) |
\textstyle \coprod_{i=1}^N x_i |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \coprod_{i=1}^N x_i} | |
Limit | \lim_{n \to \infty}x_n |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty}x_n} | |
Limit (force \textstyle ) |
\textstyle \lim_{n \to \infty}x_n |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \lim_{n \to \infty}x_n} | |
Integral | \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx} | |
Integral (alternate limits style) | \int_{1}^{3}\frac{e^3/x}{x^2}\, dx |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_{1}^{3}\frac{e^3/x}{x^2}\, dx} | |
Integral (force \textstyle ) |
\textstyle \int\limits_{-N}^{N} e^x\, dx |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \int\limits_{-N}^{N} e^x\, dx} | |
Integral (force \textstyle , alternate limits style) |
\textstyle \int_{-N}^{N} e^x\, dx |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \int_{-N}^{N} e^x\, dx} | |
Double integral | \iint\limits_D \, dx\,dy |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \iint\limits_D \, dx\,dy} | |
Triple integral | \iiint\limits_E \, dx\,dy\,dz |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \iiint\limits_E \, dx\,dy\,dz} | |
Quadruple integral | \iiiint\limits_F \, dx\,dy\,dz\,dt |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \iiiint\limits_F \, dx\,dy\,dz\,dt} | |
Line or path integral | \int_C x^3\, dx + 4y^2\, dy |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_C x^3\, dx + 4y^2\, dy} | |
Closed line or path integral | \oint_C x^3\, dx + 4y^2\, dy |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \oint_C x^3\, dx + 4y^2\, dy} | |
Intersections | \bigcap_1^n p |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bigcap_1^n p} | |
Unions | \bigcup_1^k p |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bigcup_1^k p} |
Fractions, matrices, multilines
Feature | Syntax | How it looks rendered |
---|---|---|
Fractions | \frac{1}{2}=0.5
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{2}=0.5} |
Small Fractions | \tfrac{1}{2} = 0.5
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{1}{2} = 0.5} |
Large (normal) Fractions | \dfrac{k}{k-1} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{1}{2}}} = a
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dfrac{k}{k-1} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{1}{2}}} = a} |
Large (nested) Fractions | \cfrac{2}{c + \cfrac{2}{d + \cfrac{1}{2}}} = a
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cfrac{2}{c + \cfrac{2}{d + \cfrac{1}{2}}} = a} |
Binomial coefficients | \binom{n}{k}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \binom{n}{k}} |
Small Binomial coefficients | \tbinom{n}{k}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tbinom{n}{k}} |
Large (normal) Binomial coefficients | \dbinom{n}{k}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dbinom{n}{k}} |
Matrices | \begin{matrix} x & y \\ z & v \end{matrix} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{matrix} x & y \\ z & v \end{matrix}} |
\begin{vmatrix} x & y \\ z & v \end{vmatrix} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{vmatrix} x & y \\ z & v \end{vmatrix}} | |
\begin{Vmatrix} x & y \\ z & v \end{Vmatrix} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{Vmatrix} x & y \\ z & v \end{Vmatrix}} | |
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix} } | |
\begin{Bmatrix} x & y \\ z & v \end{Bmatrix} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{Bmatrix} x & y \\ z & v \end{Bmatrix}} | |
\begin{pmatrix} x & y \\ z & v \end{pmatrix} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} x & y \\ z & v \end{pmatrix}} | |
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) } | |
Case distinctions | f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} } |
Multiline equations | \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} } |
\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} } | |
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed) | \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}} |
Multiline equations (more) | \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}} |
Breaking up a long expression so that it wraps when necessary. | <math>f(x) = \sum_{n=0}^\infty a_n x^n </math> <math>= a_0+a_1x+a_2x^2+\cdots</math> |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x) = \sum_{n=0}^\infty a_n x^n } Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = a_0 +a_1x+a_2x^2+\cdots} |
Simultaneous equations | \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}} |
Arrays | \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array} } |
Parenthesizing big expressions, brackets, bars
Feature | Syntax | How it looks rendered |
---|---|---|
Bad | ( \frac{1}{2} )
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ( \frac{1}{2} )} |
Good | \left ( \frac{1}{2} \right )
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left ( \frac{1}{2} \right )} |
You can use various delimiters with \left and \right:
Feature | Syntax | How it looks rendered |
---|---|---|
Parentheses | \left ( \frac{a}{b} \right )
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left ( \frac{a}{b} \right )} |
Brackets | \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack} |
Braces | \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace} |
Angle brackets | \left \langle \frac{a}{b} \right \rangle
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left \langle \frac{a}{b} \right \rangle} |
Bars and double bars | \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|} |
Floor and ceiling functions: | \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil} |
Slashes and backslashes | \left / \frac{a}{b} \right \backslash
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left / \frac{a}{b} \right \backslash} |
Up, down and up-down arrows | \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow} |
Delimiters can be mixed, as long as \left and \right match |
\left [ 0,1 \right )</code> <br/> <code>\left \langle \psi \right |
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left [ 0,1 \right )}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left \langle \psi \right |} |
Use \left. and \right. if you don't want a delimiter to appear: |
\left . \frac{A}{B} \right \} \to X
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left . \frac{A}{B} \right \} \to X} |
Size of the delimiters | \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]/ |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]} |
\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle} | |
\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|} | |
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil} | |
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow} | |
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow} | |
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash} |
Alphabets and typefaces
Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.
Greek alphabet | |
---|---|
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!} |
\Eta \Theta \Iota \Kappa \Lambda \Mu
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Eta \Theta \Iota \Kappa \Lambda \Mu \,\!} |
\Nu \Xi \Pi \Rho \Sigma \Tau
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Nu \Xi \Pi \Rho \Sigma \Tau\,\!} |
\Upsilon \Phi \Chi \Psi \Omega
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Upsilon \Phi \Chi \Psi \Omega \,\!} |
\alpha \beta \gamma \delta \epsilon \zeta
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha \beta \gamma \delta \epsilon \zeta \,\!} |
\eta \theta \iota \kappa \lambda \mu
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta \theta \iota \kappa \lambda \mu \,\!} |
\nu \xi \pi \rho \sigma \tau
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu \xi \pi \rho \sigma \tau \,\!} |
\upsilon \phi \chi \psi \omega
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \upsilon \phi \chi \psi \omega \,\!} |
\varepsilon \digamma \vartheta \varkappa
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon \digamma \vartheta \varkappa \,\!} |
\varpi \varrho \varsigma \varphi
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varpi \varrho \varsigma \varphi\,\!} |
Blackboard Bold/Scripts | |
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!} |
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!} |
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!} |
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!} |
\C \N \Q \R \Z
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \C \N \Q \R \Z} |
boldface (vectors) | |
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!} |
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!} |
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!} |
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!} |
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!} |
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!} |
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!} |
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!} |
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!} |
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!} |
Boldface (greek) | |
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!} |
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!} |
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!} |
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!} |
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!} |
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!} |
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!} |
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!} |
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!} |
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!} |
Italics | |
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!} |
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!} |
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!} |
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!} |
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!} |
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!} |
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!} |
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!} |
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!} |
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!} |
Roman typeface | |
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!} |
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!} |
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!} |
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!} |
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!} |
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!} |
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!} |
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!} |
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!} |
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!} |
Fraktur typeface | |
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!} |
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!} |
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!} |
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!} |
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!} |
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!} |
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!} |
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!} |
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!} |
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!} |
Calligraphy/Script | |
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!} |
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!} |
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!} |
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!} |
Hebrew | |
\aleph \beth \gimel \daleth
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \aleph \beth \gimel \daleth\,\!} |
Feature | Syntax | How it looks rendered | |
---|---|---|---|
non-italicised characters | \mbox{abc}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mbox{abc}} | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mbox{abc} \,\!} |
mixed italics (bad) | \mbox{if} n \mbox{is even}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mbox{if} n \mbox{is even}} | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mbox{if} n \mbox{is even} \,\!} |
mixed italics (good) | \mbox{if }n\mbox{ is even}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mbox{if }n\mbox{ is even}} | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mbox{if }n\mbox{ is even} \,\!} |
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) | \mbox{if}~n\ \mbox{is even}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mbox{if}~n\ \mbox{is even}} | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mbox{if}~n\ \mbox{is even} \,\!} |
Color
Equations can use color:
{\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}}
x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}}
It is also possible to change the background color, as in the following example:
Background | Wikicode | Rendering (in PNG) |
---|---|---|
White | e^{i \pi} + 1 = 0
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e^{i \pi} + 1 = 0\,\!} |
\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0\,\!} | |
Orange | e^{i \pi} + 1 = 0
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e^{i \pi} + 1 = 0\,\!} |
\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0\,\!} |
See here for all named colors supported by LaTeX.
Note that color should not be used as the only way to identify something, because it will become meaningless on black-and-white media or for color-blind people.
Formatting issues
Spacing
Note that TeX handles most spacing automatically, but you may sometimes want manual control.
Feature | Syntax | How it looks rendered |
---|---|---|
double quad space | a \qquad b
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \qquad b} |
quad space | a \quad b
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \quad b} |
text space | a\ b
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\ b} |
text space without PNG conversion | a \mbox{ } b
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \mbox{ } b} |
large space | a\;b
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\;b} |
medium space | a\>b
|
[not supported] |
small space | a\,b
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\,b} |
no space | ab
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ab\,} |
small negative space | a\!b
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\!b} |
Automatic spacing may be broken in very long expressions (because they produce an overfull hbox in TeX):
<math>0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots</math>
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}
This can be remedied by putting a pair of braces { } around the whole expression:
<math>{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}</math>
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}}
Alignment with normal text flow
Due to the default css
img.tex { vertical-align: middle; }
an inline expression like Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_{-N}^{N} e^x\, dx} should look good.
If you need to align it otherwise, use <math style="vertical-align:-100%;">...</math>
and play with the vertical-align
argument until you get it right; however, how it looks may depend on the browser and the browser settings.
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
Forced PNG rendering
To force the formula to render as PNG, add \,
(small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in preferences).
You can also use \,\!
(small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike \,
.
This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).
For instance:
Syntax | How it looks rendered |
---|---|
a^{c+2}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{\,\!c+2}} |
a^{c+2} \,
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{c+2} \,} |
a^{\,\!c+2}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{\,\!c+2}} |
a^{b^{c+2}}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{b^{c+2}}} (WRONG with option "HTML if possible or else PNG"!) |
a^{b^{c+2}} \,
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{b^{c+2}} \,} (WRONG with option "HTML if possible or else PNG"!) |
a^{b^{c+2}}\approx 5
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{b^{c+2}}\approx 5} (due to "Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \approx} " correctly displayed, no code "\,\!" needed) |
a^{b^{\,\!c+2}}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{b^{\,\!c+2}}} |
\int_{-N}^{N} e^x\, dx
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_{-N}^{N} e^x\, dx} |
This has been tested with most of the formulae on this page, and seems to work perfectly.
You might want to include a comment in the HTML so people don't "correct" the formula by removing it:
- <!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
Commutative diagrams
To make a commutative diagram, there are three steps:
- Write the diagram in TeX
- Convert to SVG
- Upload the file
Diagrams in TeX
Xy-pic (online manual) is the most powerful and general-purpose diagram package in TeX].
Simpler packages include:
The following is a template for Xy-pic, together with a hack to increase the margins in dvips, so that the diagram is not truncated by over-eager cropping (suggested in TUGboat TUGboat, Volume 17 1996, No. 3):
\documentclass{amsart} \usepackage[all, ps]{xy} % Loading the XY-Pic package % Using postscript driver for smoother curves \usepackage{color} % For invisible frame \begin{document} \thispagestyle{empty} % No page numbers \SelectTips{eu}{} % Euler arrowheads (tips) \setlength{\fboxsep}{0pt} % Frame box margin {\color{white}\framebox{{\color{black}$$ % Frame for margin \xymatrix{ % The diagram is a 3x3 matrix %%% Diagram goes here %%% } $$}}} % end math, end frame \end{document}
Convert to SVG
Once you have produced your diagram in LaTeX (or TeX), you can convert it to an SVG file using the following sequence of commands:
pdflatex file.tex pdfcrop --clip file.pdf tmp.pdf pdf2svg tmp.pdf file.svg (rm tmp.pdf at the end)
pdflatex and the pdfcrop and pdf2svg utilities are needed for this procedure.
If you do not have these programs, you can also use the commands
latex file.tex dvipdfm file.dvi
to get a PDF version of your diagram.
Programs
In general, you will not be able to get anywhere with diagrams without TeX and Ghostscript, and the inkscape
program is a useful tool for creating or modifying your diagrams by hand. There is also a utility pstoedit
which supports direct conversion from Postscript files to many vector graphics formats, but it requires a non-free plugin to convert to SVG, and regardless of the format, this editor has not been successful in using it to convert diagrams with diagonal arrows from TeX-created files.
These programs are:
- a working TeX distribution, such as TeX Live
- Ghostscript
- pstoedit
- Inkscape
Upload the file
As the diagram is your own work, upload it to the Repository, so that all Wikis can use it without having to copy it to their language's Wiki.
- Check size
- Before uploading, check that the default size of the image is neither too large nor too small by opening in an SVG application and viewing at default size (100% scaling), otherwise adjust the -y option to dvips.
- Name
- Make sure the file has a meaningful name.
- Upload
- Login to the Repository, then upload the file for the Summary, give a brief description.
Now go to the image page and add a description:
- Include the complete .tex file, not just the fragment, so future editors do not need to reconstruct a compilable file.
- License
- The most common license for commutative diagrams is PD-self; some use other licenses. Please do not use the GFDL, as it requires the entire text of the GFDL to be attached to any document that uses the diagram.
- Description
- If possible, link to a SaltWiki page relevant to the diagram.
- Category
- Include [[Category:Commutative diagrams]]. There are also subcategories, which you may choose to use.
- Include image
- Now include the image on the original page via [[Image:Diagram.svg]]
Examples
A sample conforming diagram is commons:Image:PSU-PU.svg.
Examples
Quadratic Polynomial
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ax^2 + bx + c = 0} <math>ax^2 + bx + c = 0</math>
Quadratic Polynomial (Force PNG Rendering)
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ax^2 + bx + c = 0\,\!} <math>ax^2 + bx + c = 0\,\!</math>
Quadratic Formula
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}} <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
Tall Parentheses and Fractions
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)} <math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math>
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}} <math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math>
Integrals
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy} <math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math>
Summation
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}} <math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} {3^m\left(m\,3^n+n\,3^m\right)}</math>
Differential Equation
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u'' + p(x)u' + q(x)u=f(x),\quad x>a} <math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
Complex numbers
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)} <math>|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)</math>
Limits
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{z\rightarrow z_0} f(z)=f(z_0)} <math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>
Integral Equation
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR} <math>\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
Example
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}} <math>\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>
Continuation and cases
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x) = \begin{cases}1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise}\end{cases}} <math> f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise} \end{cases} </math>
Prefixed subscript
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}\frac{z^n}{n!}} <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} \frac{z^n}{n!}</math>
Fraction and small fraction
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac {a}{b}} Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac {a}{b} } <math> \frac {a}{b}\ \tfrac {a}{b} </math>
Bug reports
Discussions, bug reports and feature requests should go to the Wikitech-l mailing list. These can also be filed on Mediazilla under MediaWiki extensions.
Future
In the future, as more browsers are smarter, it will be able to generate enhanced HTML or even MathML in many cases. (See blahtex for information about current work on adding MathML support.)
Notes
- ↑ http://en.wikipedia.org/wiki/Help:Displaying_a_formula
- ↑ This requires the wiki to have the Template:! containing "|", as many wikis do.
External links
- A LaTeX tutorial.
- A paper introducing TeX—see page 39 onwards for a good introduction to the maths side of things.
- A paper introducing LaTeX—skip to page 49 for the math section. See page 63 for a complete reference list of symbols included in LaTeX and AMS-LaTeX.
- The Comprehensive LaTeX Symbol List.
- AMS-LaTeX guide.
- A set of public domain fixed-size math symbol bitmaps.
- MathML: A product of the W3C Math working group, is a low-level specification for describing mathematics as a basis for machine to machine communication.
Language: | English • Deutsch |
---|