Polarisationsmikroskopie: Unterschied zwischen den Versionen

Aus Salzwiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
 
(31 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<bibimport /> <br> zurück zu [[Verfahren zur Salzanalyse|Verfahren zur Salzanalyse]] <br>  
Autoren: [[Benutzer:Hschwarz|Hans-Jürgen Schwarz]], [[Benutzer:AHusen|Anika Husen]]
<br>  


== Autoren ==
zurück zu [[Verfahren zur Salzanalyse|Verfahren zur Salzanalyse]]
<br> <br>


[[Benutzer:Hschwarz|Hans-Jürgen Schwarz]], [[Benutzer:AHusen|Anika Husen]], NN <br>
== Abstract  ==


== Zusammenfassung  ==
Die Methode zur Bestimmung von Salzen mit dem Polarisationsmikroskop wird kurz erläutert und Vor- und Nachteile beim Bestimmen von Salzen werden angeführt.


== Einführung  ==
== Einführung  ==


[[Image:MgSO4 Kristallisationsvideo.ogg|thumb|right]]<br> Die Polarisationsmikroskopie <bib id="Wuelfert:1999" />wird insbesondere bei der Betrachtung anisotroper (doppelbrechender) Objekte eingesetzt. Gegenüber den normalen Mikroskopen besitzt das Polarisationsmikroskop einen Polarisator (polarisiertes Licht) in der Beleuchtungseinheit: durch ihn wird das Objekt mit linear polarisiertem Licht beleuchtet. Im Beobachtungsstrahlungsgang befindet sich zusätzlich ein weiterer Polarisator (Analysator), der die Änderung des linear polarisierten Lichtes durch das Objekt zu analysieren gestattet. Ohne Objekt muss bei gekreuzten Polarisator und Analysator (90° Unterschied in der Schwingungsebene des jeweils durchgelassenen Lichts) Dunkelheit herrschen. In der Polarisationsmikroskopie werden die direkte (orthoskopische) oder die indirekte (konoskopische) Betrachtungsweise angewandt. Die orthoskopische Betrachtungsweise entspricht der in der normalen Mikroskopie üblichen Betrachtungsweise. Anisotrope Körper erscheinen bei eingeschaltetem Analysator je nach ihrer Orientierung, der Dicke und Größe der [[Doppelbrechung]] in der dem Gangunterschied zwischen ordentlichen und außerordentlichen Strahl entsprechenden Interferenzfarbe.  
<!--[[Image:MgSO4 Kristallisationsvideo.ogg|thumb|right|Kristallisation von Magesiumsulfat bei gekreuzten Polarisatoren und Rot I]] --><br> Die Polarisationsmikroskopie <bib id="Wuelfert:1999" /> wird insbesondere bei der Betrachtung anisotroper (doppelbrechender) Objekte <ref>http://www.microscopy-uk.org.uk/mag/artnov08/rd-crystals.html, gesehen 19.11.2009</ref> eingesetzt. Gegenüber den normalen Mikroskopen besitzt das Polarisationsmikroskop einen Polarisator (polarisiertes Licht) in der Beleuchtungseinheit; durch ihn wird das Objekt mit linear polarisiertem Licht beleuchtet. Im Beobachtungsstrahlungsgang befindet sich zusätzlich ein weiterer Polarisator (Analysator), der die Änderung des linear polarisierten Lichtes durch das Objekt zu analysieren gestattet. Ohne Objekt muss bei gekreuztem Polarisator und Analysator (90° Unterschied in der Schwingungsebene des jeweils durchgelassenen Lichts) Dunkelheit herrschen. In der Polarisationsmikroskopie werden die direkte (orthoskopische) oder die indirekte (konoskopische) Betrachtungsweise angewandt. Die orthoskopische Betrachtungsweise entspricht der in der normalen Mikroskopie üblichen Betrachtungsweise. Anisotrope Körper erscheinen bei eingeschaltetem Analysator je nach ihrer Orientierung, der Dicke und Größe der [[Doppelbrechung]]<ref>http://e3.physik.uni-dortmund.de/~suter/Vorlesung/Physik_B3_SS03/6.5_Polarisation.pdf, gesehen 19.11.2009</ref><ref>http://www.gemmologie.at/mediaCache/Doppelbrechung_270385.pdf, gesehen 19.11.2009</ref><ref>http://www.physik.uni-jena.de/inst/iao/applets/doppelbrechung/doppelbrechung.html, gesehen 19.11.2009</ref> in der dem Gangunterschied zwischen ordentlichen und außerordentlichen Strahl entsprechenden Interferenzfarbe.  
 
 
[[Image:Mueller-kon+ort.jpg|thumb|600px|center|'''A''':Im orthoskopischen Strahlengang(Lukenstrahlengang) älterer Polarisationsmikroskope erzeugt das Objektiv ein vergrößertes, höhen-und seitenverkehrtes Zwischenbild des Dünnschliffs. Dieses wird mit dem Okular nochmals vergrößert betrachtet (A-2). In modernen Polarisationsmikroskopen<ref> http://www.igw.uni-jena.de/mineral/downloads/polarisationsmikr.pdf gesehen 16.07.2010</ref> befindet sich das Objekt in der unteren Brennebene des Objektivs, so dass es nach Unendlich abgebildet wird. Das mit dem Okular zu betrachtende reelle Zwischenbild wird durch eine zusätzliche Linse im Tubus (Tubuslinse) erzeugt (A-1).
Durch dieses Abbildungsverfahren entsteht zwischen Objektiv und Tubuslinse ein paralleler Strahlengang, der ideale Voraussetzungen für ein störungsfreies Einfügen von Analysatoren, Kompensatoren oder Reflektoren schafft und außerdem eine bessere Korrektur der Abbildungsfehler ermöglicht.<br>


[[Polarisationsmikroskop:Konoskopie|Konoskopische Betrachtungsweise]]: Durch Einschalten einer zusätzlichen Linse (Amici-Bertrand-Linse) oder Entfernen eines Okulars wird die hintere Brennebene des Objektivs in die mit dem Okular betrachtete Zwischenbildebene abgebildet. Während bei der orthoskopischen Betrachtungsweise jeder Bildpunkt einem Objektpunkt entspricht, ist bei der konoskopischen Betrachtungsweise jedem Bildpunkt ein paralleles Strahlenbündel zugeordnet. Das Bild gibt dann über die Richtungsabhängigkeit der Doppelbrechung Auskunft (soweit sie durch die Apertur erfasst werden kann). Mit dieser Methode ist es somit möglich zu bestimmen, ob ein Kristall optisch einachsig oder zweiachsig sowie optisch positiv oder negativ ist. Die [[Bestimmung der Lichtbrechung|Lichtbrechung]] von Salzmineralien kann relativ leicht bei Kenntnis der [[Lichtbrechung]] des Einbettungsmediums, bzw. Immersionsöles abgeschätzt werden.  
'''B''':Im konoskopischen Strahlengang(Pupillenstrahlengang) dagegen erfolgt die Abbildung paralleler Lichtstrahlen des Strahlenkegels in der oberen Brennebene des Objektivs. Das dort entstehende Interferenzbild (im Falle optisch anisotroper Kristalle) wird mit Hilfe der Amici-Bertrand-Linse vergrößert betrachtet. Ist keine Amici-Bertrand-Linse vorhanden, so kann das Interferenzbild auch durch eine anstelle des Okulars eingesetzten Lochblende (Diopter) im Tubus betrachtet werden.<bib id="Raith.etal:2009"/>]]
[[Polarisationsmikroskop:Konoskopie|Konoskopische Betrachtungsweise]]: Durch Einschalten einer zusätzlichen Linse (Amici-Bertrand-Linse) oder Entfernen eines Okulars wird die hintere Brennebene des Objektivs in die mit dem Okular betrachtete Zwischenbildebene abgebildet. Während bei der orthoskopischen Betrachtungsweise jeder Bildpunkt einem Objektpunkt entspricht, ist bei der konoskopischen Betrachtungsweise jedem Bildpunkt ein paralleles Strahlenbündel zugeordnet. Das Bild gibt dann über die Richtungsabhängigkeit der Doppelbrechung Auskunft (soweit sie durch die Apertur erfasst werden kann). Mit dieser Methode ist es somit möglich zu bestimmen, ob ein Kristall optisch einachsig oder zweiachsig sowie optisch positiv oder negativ ist. Die [[Bestimmung der Lichtbrechung|Lichtbrechung von Salzmineralien]] kann relativ leicht bei Kenntnis der [[Lichtbrechung]] des Einbettungsmediums, bzw. Immersionsöles abgeschätzt werden.  


<br> Schema eines Polarisationsmikroskopes<ref> http://www.igw.uni-jena.de/mineral/downloads/polarisationsmikr.pdf gesehen 16.07.2010</ref>


<br> Eine genaue Beschreibung der mikroskopischen Mineralanalyse findet sich z.B. bei <bib id="Mueller.etal:2009" /> /&gt;
Eine genaue Beschreibung der mikroskopischen Mineralanalyse findet sich z.B. bei <bib id="Raith.etal:2009" />.


<br> '''Vorteil:'''  
<br> '''Vorteil:'''  


Die Polarisationsmikroskopie ist ein günstige Methode und bei entsprechender Erfahrung auch eine schnelle Methode zur Bestimmung von Salzen. Es wird die Mineralogie und Chemie der Salze bestimmt. Sie ist transportabel und an jedem Ort einsetzbar, sodass auch "empfindliche" Salze direkt bestimmt werden können.  
Die Polarisationsmikroskopie ist ein günstige Methode und bei entsprechender Erfahrung auch eine schnelle Methode zur [[Mikroskopie der Salze|Bestimmung von Salzen]]. Es wird die Mineralogie und Chemie der Salze bestimmt. Einfache kompakte Polarisationsmikrokope sind transportabel und an jedem Ort einsetzbar, sodass auch "empfindliche" Salze direkt vor Ort bestimmt werden können.  


<br> '''Nachteil:'''  
<br> '''Nachteil:'''  


Manche Salze sind nur schwer oder kaum zu identifizieren. Es ist keine quantitative Bestimmung möglich.  
Manche Salze sind nur schwer oder kaum zu identifizieren. Es ist keine quantitative Bestimmung möglich.
 
<br>
 
<br>
 
== Lambda-Plättchen  ==
 
Mit Hilfe des so genannten Lambda-Plättchens/Kompensators kann eine sicherere Bestimmung der Interferenzfarben erfolgen. Dieses Hilfsmittel besteht aus einem Material mit bestimmter Doppelbrechung und kann zusätzlich zu Polarisator und Analysator oberhalb der Probe in den Strahlengang eingebracht werden. Das Lambda-Plättchen ist so hergestellt, dass es die Interferenzfarbe durch seine Doppelbrechung genau um 550 nm, also um den Betrag der Differenz zwischen dem Magenta erster und zweiter Ordnung, verschieben kann. Diese Eigenschaft kann hilfreich sein, wenn zu klären ist, welcher Ordnung eine Interferenzfarbe angehört, weil durch Einschieben des Kompensators die Interferenzfarbe jeweils um eine Ordnung angehoben oder gesenkt wird, je nach Stellung von Kristall und Lambda-Plättchen zueinander. Dabei ändert sich die Intensität des Farbtons und es können durch den Vergleich beide Farbordnungen zugeordnet werden.
 
Außerdem kann mit Hilfe des Lambda-Plättchens die Richtug des größeren Bechungsindexes ermittelt werden. Dazu wird der Kristall in die Hellstellung gedreht und der Kompensator eingeschoben (dieser muss 45° zu der Horizontallinie haben). Erhöhen sich die Interferenzfarben, ist die höherbrechende Richtung des Kristalls parallel zur höherbrechenden Richtung des Kompensators. Werden die Interferenzfarben abgesenkt, befindet sich die höherbrechende Richtung des Kristalls in der niedrigerbrechenden des Kompensators und vice versa. Die Richtungen der höheren und nierdrigeren Doppelbrechung vom Lambda-Plättchen sind in der Regel auf diesem angezeichnet.
 
<br>
 
== [[Lichtbrechung]]  ==
 
Die Lichtbrechung eines Kristalles ist durch seine Gittereigenschaften bestimmt und kann mit Hilfe von Immersionsmedien abgeschätzt werden. Dazu wird der Kristall in einer Substanz mit bekannter Lichtbrechung eingebettet. Anhand unterschiedlicher Betrachtungsweisen kann festgestellt werden, ob der Kristall höher oder niedriger lichtbrechend ist als das Immersionsmedium. Mit dem Abgleich mit mehreren bekannten Brechungsindizes kann die Abschätzung des Brechungsindex des Kristalles erfolgen. Dabei ist zu beachten, dass doppelbrechende Kristalle in verschiedener Ausrichtung zu den Polarisatoren unterschiedliche Brechungsindizes aufweisen.
 
<br>'''Becke-Linie'''
 
Eine Methode zur Bestimmung des höher lichtbrechenden von zwei Materialien ist die Betrachtung der Becke’schen Linie. Bei dieser handelt es sich um einen hellen Lichsaum, der sich beim Defokussieren einer Grenzfläche zeigt. Diese Becke-Linie bewegt sich bei Heben des Tubus/Senken des Objekttisches in das höher brechende Material hinein. Sind die Werte der Lichtbrechung beider Körper gleich, tritt die Becke-Linie nicht auf und je geringer sie sich unterscheiden, desto schwächer ist sie ausgeprägt.
 
[[Image:Becke-Linie 1.jpg|thumb|right]] [[Image:Becke-Linie 2.jpg|thumb|right]] [[Image:Becke-Linie 3.jpg|thumb|right]]
 
<br> <br>Die Erscheinung der Becke-Linie lässt sich dadurch erklären, dass die Partikelgrenzen von Kristallen selten parallel zum Strahlengang des Lichtes ausgerichtet sind. Durch die geneigte Grenzfläche treten an dieser die Phänomene der Lichtbrechung und Reflexion auf. Durch die so erzeugte Bündelung von Lichtstrahlen wird die Intensität im Grenzflächenbereich erhöht.
 
''Abbildung der Strahlenbündelung''
 
<br>
 
<br>'''Relief'''
 
Durch unterschiedliche Lichtbrechung von einem Kristall und seinem Immersionsmedium wird ein optisches Relief erzeugt, wobei das jeweils höher lichtbrechende Material stets höher im Relief erscheint. Je größer die Differenz der jeweiligen Brechungsindizes, desto stärker ist das scheinbare Relief. Der Effekt wird durch die Reflexion des Lichtes an der Grenzfläche hervorgrufen.
 
<br>„'''Reliefwechsel'''
 
Doppelbrechende Kristalle weisen in jeder Betrachtungsrichtung zwei unterschiedliche Brechungsindizes auf, die beim Drehen des Kristalls auf dem Rotationstisch des Polarisationsmikroskopes in die Normalstellung erfaßbar werden. Da bei der Rotation somit stets zwei unterschiedliche Indizes nacheinander durchlaufen werden, ändert sich die Differenz zwischen dem Brechungsindex des Einbettmittels und denen des Kristalls mit der Folge eines sichtbaren Reliefwechsels.
 
Bezüglich des Reliefs ist also zusammenzufassen: 1. Die Ausprägung des Reliefs eines Kristalls kennzeichnet die Differenz der Brechungsindizes zwischen Immersionsmittel auf der einen Seite und dem Index, bzw. den Indizes eines Kristalls auf der anderen Seite. 2. Ein ausgeprägter Wechsel im Relief eines Kristalls bei der Drehung des Rotationstisches (in polarisiertem Licht) kennzeichnet eine Differenz der beiden Brechungsindizes eines doppelbrechenden Kristalls (also die Doppelbrechung).“
 
<br>'''Chagrin'''
 
Die Bezeichnung Chagrin (franz. Genarbtes Leder) bezieht sich auf die Erscheinung der Oberfläche eines Licht - brechenden Kristalls. Je höher die Differenz der Brechungsindizes von Kristall und Immersionsmittel ist, desto stärker treten Oberflächenstrukturen in Erscheinung.
 
<br>'''Schröder van der Kolk - Schatten'''
 
[[Image:Kolk-Schatten.jpg|thumb|left]]
 
„Eine weitere Verfahrensweise zur vergleichenden Indexbestimmung immergierter Partikel ist die Anwendung des sogenannten “Schroeder van der Kolk´sche Kriterium”. Anstelle der parallelen und nicht beeinflußten Lichtführung im Mikroskoptubus beim Becke-Linien-Test, wird zur Erzeugung des “Schroeder van der Kolk-Schattens” die Lichtführung manipuliert. Eine einseitig abgeschwächte Lichtführung, welche die Partikel in schrägem Einfallswinkel durchdringt, kann herbeigeführt werden, wenn man seitlich zwischen Objektiv und Okular ein Hindernis einschiebt. Aus beiden Manipulationen resultiert der Effekt einer deutlichen, am Partikel einseitig auftretenden Schattenbildung immer dann, wenn eine Differenz der Brechungsindizes von Partikel und Medium vorliegt. Entscheidend ist hierbei, daß sich der Schattenwurf im Falle eines höheren Brechungsindex des Partikels nur auf einer Partikelhälfte niederschlägt und vice versa. Es gilt: Ist der Brechungsindex des Partikels größer, als der des Einbettmedium, so liegt der entstandene Schatten auf der Partikelseite, von welcher das Hindernis in den Strahlengang eingebracht wurde. Die naturwissenschaftliche Erklärung für das Phänomen einer einseitigen Schattenbildung im Falle der beschriebenen Manipulation der Beleuchtung am Mikroskop fußt wiederum auf den "Gesetzmäßigkeiten der Lichtbrechung und der Totalreflexion.“
 
<br> <br>„Für die Arbeit mit der Immersionsmethode müssen unterschiedliche Immersionsmittel mit einer Reihe von Brechungsindizes verfügbar sein. Bei der Salzanalyse haben die Immersionsmittel folgende prinzipielle Anforderungen zu erfüllen: · Für die Salzanalyse ist es notwendig, den Brechungsindex eines Medium mit einer Genauigkeit von 60.05 zu kennen und zu gewährleisten.
 
*Aus der Genauigkeitsanforderung resultiert, daß hygroskopische Immersionsmedien (wie z.B. Glycerin) oder Medienmischungen mit unterschiedlich flüchtigen Anteilen nur verwendet werden können, wenn eine Kontrolle des Brechungsindex mittels Refraktometer möglich ist.
*Die Immersionsmittel dürfen die Salzphasen möglichst gar nicht- und wenn, dann nur in geringstem Maße anlösen. Somit scheiden alle wasserhaltigen Medien aus.
*Die Immersionsmittel müssen transparent und untoxisch sein und dürfen nicht mit Salzen reagieren.
*Sofern Lösungsmittel als Immersionsmittel verwendet werden, dürfen sie sich nicht zu schnell verflüchtigen (die Verdunstungszahl sollte &gt; 10 sein, der Dampfdruck &lt; 100 hPa betragen).“


<br><br>
{| width="100%" cellspacing="0" cellpadding="4" border="2" align="left"
|+ Liste von Immersionsflüssigkeiten nach Mainusch (2001)<bib id="Mainusch:2001" />
|-
| bgcolor="#ffff99" | Brechungsindex<br><nowiki>[</nowiki>nD20°C<nowiki>]</nowiki>
| bgcolor="#ffff99" | Immersionsmedium (flüchtig)
| bgcolor="#ffff99" | Immersionsmedium<br> (nicht flüchtig)
| bgcolor="#ffff99" | Bemerkungen
|-
| bgcolor="#ffff99" | 1.32
| bgcolor="#ccffcc" | Methanol
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Bezug: Merck, Okt. 2000<br>Löst bestimmte Salze.
|-
| bgcolor="#ffff99" | 1.35
| bgcolor="#ccffcc" | Aceton
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Bezug: Merck, Okt. 2000<br>Für mikroskopische Zwecke etwas zu leicht flüchtig.
|-
| bgcolor="#ffff99" | 1.36
| bgcolor="#ccffcc" | Ethanol (absolut)
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Bezug: Roth 1999; Index mit Refraktometer gemessen<br>Löst bestimmte Salze
|-
| bgcolor="#ffff99" | 1.38
| bgcolor="#ccffcc" | Propanol
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Bezug: Roth 1999; Index mit Refraktometer gemessen
|-
| bgcolor="#ffff99" | 1.388
| bgcolor="#ccffcc" | n-Heptan
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Bezug: Merck, Okt. 2000
|-
| bgcolor="#ffff99" | 1.399
| bgcolor="#ccffcc" | n-Butanol
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Bezug: Roth 1999; Index mit Refraktometer gemessen
|-
| bgcolor="#ffff99" | 1,41
| bgcolor="#ccffcc" | n-Amylalkohol
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Bezug: Merck, Okt. 2000
|-
| bgcolor="#ffff99" | 1.428
| bgcolor="#ccffcc" | Petroleum
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Apothekenprodukt, Index mit Refraktometer gemessen
|-
| bgcolor="#ffff99" | 1.446
| bgcolor="#ccffcc" | Chloroform
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Bezug: Merck, Okt. 2000
|-
| bgcolor="#ffff99" | 1.45
| bgcolor="#ccffcc" | Kerosin
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Apothekenprodukt, Index mit Refraktometer gemessen
|-
| bgcolor="#ffff99" | 1.455
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Glyzerin
| bgcolor="#ccffcc" | Bezug: Roth 1999; Index mit Refraktometer gemessen<br>Löst bestimmte Salze
|-
| bgcolor="#ffff99" | 1.46
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Wallnußöl
| bgcolor="#ccffcc" | Apothekenprodukt, Index mit Refraktometer gemessen
|-
| bgcolor="#ffff99" | 1.465
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Rizinusöl
| bgcolor="#ccffcc" | Apothekenprodukt, Index mit Refraktometer gemessen
|-
| bgcolor="#ffff99" | 1.47
| bgcolor="#ccffcc" | Terpentinöl
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Doppelt rektifiziert, Index mit Refraktometer gemessen
|-
| bgcolor="#ffff99" | 1.474
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Glyzerin (wasserfrei)
| bgcolor="#ccffcc" | Bezug: Merck, Okt. 2000
|-
| bgcolor="#ffff99" | 1.491
| bgcolor="#ccffcc" | Toluol
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Bezug: Merck, Okt. 2000
|-
| bgcolor="#ffff99" | 1.505
| bgcolor="#ccffcc" | o-Xylol
| bgcolor="#ccffcc" | &nbsp;
| bgcolor="#ccffcc" | Bezug: Merck, Okt. 2000
|-
| bgcolor="#ffff99" | 1.513
| bgcolor="#ccffcc" | Iodoethan
| bgcolor="#ccffcc" | <nowiki>-</nowiki>
| bgcolor="#ccffcc" | Bezug: Merck, Okt. 2000<br>Für mikroskopische Zwecke etwas zu leicht flüchtig.
|-
| bgcolor="#ffff99" | 1.516-1.518
| bgcolor="#ccffcc" | <nowiki>-</nowiki>
| bgcolor="#ccffcc" | Standard-Immersionsöl Zeiss
| bgcolor="#ccffcc" | <nowiki>-</nowiki>
|-
| bgcolor="#ffff99" | 1.53
| bgcolor="#ccffcc" | <nowiki>-</nowiki>
| bgcolor="#ccffcc" | Nelkenöl
| bgcolor="#ccffcc" | Apothekenprodukt, Index mit Refraktometer gemessen
|-
| bgcolor="#ffff99" | 1.55
| bgcolor="#ccffcc" | <nowiki>-</nowiki>
| bgcolor="#ccffcc" | Anisöl
| bgcolor="#ccffcc" | Apothekenprodukt, Index mit Refraktometer gemessen
|}
<br> <br>
<br> <br>
== Indirekte (konoskopische) Betrachtungsweise  ==
In der Polarisationsmikroskopie werden die direkte (orthoskopische) Betrachtungsweise, die der in der normalen Mikroskopie üblichen Betrachtungsweise entspricht, oder die indirekte (konoskopische) Betrachtungsweise angewandt.
Durch Einschalten einer zusätzlichen Linse (Amici-Bertrand-Linse) oder Entfernen eines Okulars wird die hintere Brennebene des Objektivs in die mit dem Okular betrachtete Zwischenbildebene abgebildet. Während bei der direkten Betrachtungsweise jeder Bildpunkt einem Objektpunkt entspricht, ist bei der indirekten Betrachtungsweise jedem Bildpunkt ein paralleles Strahlenbündel zugeordnet. Das Bild gibt dann über die Richtungsabhängigkeit der Doppelbrechung Auskunft (soweit sie durch die Apertur erfasst werden kann). Mit dieser Methode ist es somit möglich zu bestimmen, ob ein Kristall optisch einachsig oder zweiachsig sowie optisch positiv oder negativ ist.
{| width="50%" cellspacing="0" cellpadding="4" border="2"
|-
| [[Isotrop]]
| uniaxial
| biaxial
|-
| amorph
| [[Kristallsystem#hexagonal|hexagonal]]
| [[Kristallsystem#orthorhombisch|orthorhombisch]]
|-
| [[Kristallsystem#kubisch|kubisch]]
| [[Kristallsystem#trigonal|trigonal]]
| [[Kristallsystem#monoklin|monoklin]]
|-
|
| [[Kristallsystem#tetragonal|tetragonal]]
| [[Kristallsystem#triklin|triklin]]
|}
<br>
==Weblinks==
==Weblinks==


Zeile 232: Zeile 37:
== Literatur  ==
== Literatur  ==


<bibprint />  
<biblist />
 
noch zu erfassen
 
*Der Blick ins Bild, S. Wülfert, 1999
*Methoden der Dünnschliffmikroskopie, G.Müller und M. Raith, 1976
 
== WebLinks  ==
 
*http://e3.physik.uni-dortmund.de/~suter/Vorlesung/Physik_B3_SS03/6.5_Polarisation.pdf, 19.11.2009
*http://www.gemmologie.at/mediaCache/Doppelbrechung_270385.pdf, 19.11.2009
*http://www.physik.uni-jena.de/inst/iao/applets/doppelbrechung/doppelbrechung.html, 19.11.2009
*http://www.microscopy-uk.org.uk/mag/artnov08/rd-crystals.html, 19.11.2009


[[Category:LichtMikroskopie]] [[Category:AHusen]] [[Category:HSchwarz]] [[Category:R-MSteiger]] [[Category:R-CBlaeuer]] [[Category:Bearbeitung]]
[[Category:LichtMikroskopie]] [[Category:Husen,Anika]] [[Category:Schwarz,Hans-Jürgen]] [[Category:R-MSteiger]] [[Category:R-CBlaeuer]] [[Category:Review]]

Aktuelle Version vom 9. Juni 2023, 06:52 Uhr

Autoren: Hans-Jürgen Schwarz, Anika Husen

zurück zu Verfahren zur Salzanalyse

Abstract[Bearbeiten]

Die Methode zur Bestimmung von Salzen mit dem Polarisationsmikroskop wird kurz erläutert und Vor- und Nachteile beim Bestimmen von Salzen werden angeführt.

Einführung[Bearbeiten]


Die Polarisationsmikroskopie [Wuelfert:1999]Titel: Der Blick ins Bild
Autor / Verfasser: Wülfert, Stefan
Link zu Google Scholar
wird insbesondere bei der Betrachtung anisotroper (doppelbrechender) Objekte [1] eingesetzt. Gegenüber den normalen Mikroskopen besitzt das Polarisationsmikroskop einen Polarisator (polarisiertes Licht) in der Beleuchtungseinheit; durch ihn wird das Objekt mit linear polarisiertem Licht beleuchtet. Im Beobachtungsstrahlungsgang befindet sich zusätzlich ein weiterer Polarisator (Analysator), der die Änderung des linear polarisierten Lichtes durch das Objekt zu analysieren gestattet. Ohne Objekt muss bei gekreuztem Polarisator und Analysator (90° Unterschied in der Schwingungsebene des jeweils durchgelassenen Lichts) Dunkelheit herrschen. In der Polarisationsmikroskopie werden die direkte (orthoskopische) oder die indirekte (konoskopische) Betrachtungsweise angewandt. Die orthoskopische Betrachtungsweise entspricht der in der normalen Mikroskopie üblichen Betrachtungsweise. Anisotrope Körper erscheinen bei eingeschaltetem Analysator je nach ihrer Orientierung, der Dicke und Größe der Doppelbrechung[2][3][4] in der dem Gangunterschied zwischen ordentlichen und außerordentlichen Strahl entsprechenden Interferenzfarbe.


A:Im orthoskopischen Strahlengang(Lukenstrahlengang) älterer Polarisationsmikroskope erzeugt das Objektiv ein vergrößertes, höhen-und seitenverkehrtes Zwischenbild des Dünnschliffs. Dieses wird mit dem Okular nochmals vergrößert betrachtet (A-2). In modernen Polarisationsmikroskopen[5] befindet sich das Objekt in der unteren Brennebene des Objektivs, so dass es nach Unendlich abgebildet wird. Das mit dem Okular zu betrachtende reelle Zwischenbild wird durch eine zusätzliche Linse im Tubus (Tubuslinse) erzeugt (A-1). Durch dieses Abbildungsverfahren entsteht zwischen Objektiv und Tubuslinse ein paralleler Strahlengang, der ideale Voraussetzungen für ein störungsfreies Einfügen von Analysatoren, Kompensatoren oder Reflektoren schafft und außerdem eine bessere Korrektur der Abbildungsfehler ermöglicht.
B:Im konoskopischen Strahlengang(Pupillenstrahlengang) dagegen erfolgt die Abbildung paralleler Lichtstrahlen des Strahlenkegels in der oberen Brennebene des Objektivs. Das dort entstehende Interferenzbild (im Falle optisch anisotroper Kristalle) wird mit Hilfe der Amici-Bertrand-Linse vergrößert betrachtet. Ist keine Amici-Bertrand-Linse vorhanden, so kann das Interferenzbild auch durch eine anstelle des Okulars eingesetzten Lochblende (Diopter) im Tubus betrachtet werden.[Raith.etal:2009]Titel: Leitfaden zur Dünnschliffmikroskopie
Autor / Verfasser: Raith, Michael M.; Raase, Peter
Link zu Google Scholar

Konoskopische Betrachtungsweise: Durch Einschalten einer zusätzlichen Linse (Amici-Bertrand-Linse) oder Entfernen eines Okulars wird die hintere Brennebene des Objektivs in die mit dem Okular betrachtete Zwischenbildebene abgebildet. Während bei der orthoskopischen Betrachtungsweise jeder Bildpunkt einem Objektpunkt entspricht, ist bei der konoskopischen Betrachtungsweise jedem Bildpunkt ein paralleles Strahlenbündel zugeordnet. Das Bild gibt dann über die Richtungsabhängigkeit der Doppelbrechung Auskunft (soweit sie durch die Apertur erfasst werden kann). Mit dieser Methode ist es somit möglich zu bestimmen, ob ein Kristall optisch einachsig oder zweiachsig sowie optisch positiv oder negativ ist. Die Lichtbrechung von Salzmineralien kann relativ leicht bei Kenntnis der Lichtbrechung des Einbettungsmediums, bzw. Immersionsöles abgeschätzt werden.


Eine genaue Beschreibung der mikroskopischen Mineralanalyse findet sich z.B. bei [Raith.etal:2009]Titel: Leitfaden zur Dünnschliffmikroskopie
Autor / Verfasser: Raith, Michael M.; Raase, Peter
Link zu Google Scholar
.


Vorteil:

Die Polarisationsmikroskopie ist ein günstige Methode und bei entsprechender Erfahrung auch eine schnelle Methode zur Bestimmung von Salzen. Es wird die Mineralogie und Chemie der Salze bestimmt. Einfache kompakte Polarisationsmikrokope sind transportabel und an jedem Ort einsetzbar, sodass auch "empfindliche" Salze direkt vor Ort bestimmt werden können.


Nachteil:

Manche Salze sind nur schwer oder kaum zu identifizieren. Es ist keine quantitative Bestimmung möglich.

Weblinks[Bearbeiten]

Literatur[Bearbeiten]

[Raith.etal:2009] Raith, Michael M.; Raase, Peter (2009): Leitfaden zur Dünnschliffmikroskopie, online PublikationLink zu Google ScholarLink zum Volltext
[Wuelfert:1999] Wülfert, Stefan (1999): Der Blick ins Bild, Ravensburger BuchverlagLink zu Google Scholar