Polarisationsmikroskopie: Unterschied zwischen den Versionen

Aus Salzwiki
Zur Navigation springen Zur Suche springen
 
(28 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<bibimport /> <br> zurück zu [[Verfahren zur Salzanalyse|Verfahren zur Salzanalyse]] <br>  
Autoren: [[Benutzer:Hschwarz|Hans-Jürgen Schwarz]], [[Benutzer:AHusen|Anika Husen]]
<br>  


== Autoren ==
zurück zu [[Verfahren zur Salzanalyse|Verfahren zur Salzanalyse]]
<br> <br>


[[Benutzer:Hschwarz|Hans-Jürgen Schwarz]], [[Benutzer:AHusen|Anika Husen]], NN <br>
== Abstract  ==


== Zusammenfassung  ==
Die Methode zur Bestimmung von Salzen mit dem Polarisationsmikroskop wird kurz erläutert und Vor- und Nachteile beim Bestimmen von Salzen werden angeführt.


== Einführung  ==
== Einführung  ==


[[Image:MgSO4 Kristallisationsvideo.ogg|thumb|right]]<br> Die Polarisationsmikroskopie <bib id="Wuelfert:1999" />wird insbesondere bei der Betrachtung anisotroper (doppelbrechender) Objekte eingesetzt. Gegenüber den normalen Mikroskopen besitzt das Polarisationsmikroskop einen Polarisator (polarisiertes Licht) in der Beleuchtungseinheit: durch ihn wird das Objekt mit linear polarisiertem Licht beleuchtet. Im Beobachtungsstrahlungsgang befindet sich zusätzlich ein weiterer Polarisator (Analysator), der die Änderung des linear polarisierten Lichtes durch das Objekt zu analysieren gestattet. Ohne Objekt muss bei gekreuzten Polarisator und Analysator (90° Unterschied in der Schwingungsebene des jeweils durchgelassenen Lichts) Dunkelheit herrschen. In der Polarisationsmikroskopie werden die direkte (orthoskopische) oder die indirekte (konoskopische) Betrachtungsweise angewandt. Die orthoskopische Betrachtungsweise entspricht der in der normalen Mikroskopie üblichen Betrachtungsweise. Anisotrope Körper erscheinen bei eingeschaltetem Analysator je nach ihrer Orientierung, der Dicke und Größe der [[Doppelbrechung]] in der dem Gangunterschied zwischen ordentlichen und außerordentlichen Strahl entsprechenden Interferenzfarbe.  
<!--[[Image:MgSO4 Kristallisationsvideo.ogg|thumb|right|Kristallisation von Magesiumsulfat bei gekreuzten Polarisatoren und Rot I]] --><br> Die Polarisationsmikroskopie <bib id="Wuelfert:1999" /> wird insbesondere bei der Betrachtung anisotroper (doppelbrechender) Objekte <ref>http://www.microscopy-uk.org.uk/mag/artnov08/rd-crystals.html, gesehen 19.11.2009</ref> eingesetzt. Gegenüber den normalen Mikroskopen besitzt das Polarisationsmikroskop einen Polarisator (polarisiertes Licht) in der Beleuchtungseinheit; durch ihn wird das Objekt mit linear polarisiertem Licht beleuchtet. Im Beobachtungsstrahlungsgang befindet sich zusätzlich ein weiterer Polarisator (Analysator), der die Änderung des linear polarisierten Lichtes durch das Objekt zu analysieren gestattet. Ohne Objekt muss bei gekreuztem Polarisator und Analysator (90° Unterschied in der Schwingungsebene des jeweils durchgelassenen Lichts) Dunkelheit herrschen. In der Polarisationsmikroskopie werden die direkte (orthoskopische) oder die indirekte (konoskopische) Betrachtungsweise angewandt. Die orthoskopische Betrachtungsweise entspricht der in der normalen Mikroskopie üblichen Betrachtungsweise. Anisotrope Körper erscheinen bei eingeschaltetem Analysator je nach ihrer Orientierung, der Dicke und Größe der [[Doppelbrechung]]<ref>http://e3.physik.uni-dortmund.de/~suter/Vorlesung/Physik_B3_SS03/6.5_Polarisation.pdf, gesehen 19.11.2009</ref><ref>http://www.gemmologie.at/mediaCache/Doppelbrechung_270385.pdf, gesehen 19.11.2009</ref><ref>http://www.physik.uni-jena.de/inst/iao/applets/doppelbrechung/doppelbrechung.html, gesehen 19.11.2009</ref> in der dem Gangunterschied zwischen ordentlichen und außerordentlichen Strahl entsprechenden Interferenzfarbe.  
 
 
[[Image:Mueller-kon+ort.jpg|thumb|600px|center|'''A''':Im orthoskopischen Strahlengang(Lukenstrahlengang) älterer Polarisationsmikroskope erzeugt das Objektiv ein vergrößertes, höhen-und seitenverkehrtes Zwischenbild des Dünnschliffs. Dieses wird mit dem Okular nochmals vergrößert betrachtet (A-2). In modernen Polarisationsmikroskopen<ref> http://www.igw.uni-jena.de/mineral/downloads/polarisationsmikr.pdf gesehen 16.07.2010</ref> befindet sich das Objekt in der unteren Brennebene des Objektivs, so dass es nach Unendlich abgebildet wird. Das mit dem Okular zu betrachtende reelle Zwischenbild wird durch eine zusätzliche Linse im Tubus (Tubuslinse) erzeugt (A-1).
Durch dieses Abbildungsverfahren entsteht zwischen Objektiv und Tubuslinse ein paralleler Strahlengang, der ideale Voraussetzungen für ein störungsfreies Einfügen von Analysatoren, Kompensatoren oder Reflektoren schafft und außerdem eine bessere Korrektur der Abbildungsfehler ermöglicht.<br>


'''B''':Im konoskopischen Strahlengang(Pupillenstrahlengang) dagegen erfolgt die Abbildung paralleler Lichtstrahlen des Strahlenkegels in der oberen Brennebene des Objektivs. Das dort entstehende Interferenzbild (im Falle optisch anisotroper Kristalle) wird mit Hilfe der Amici-Bertrand-Linse vergrößert betrachtet. Ist keine Amici-Bertrand-Linse vorhanden, so kann das Interferenzbild auch durch eine anstelle des Okulars eingesetzten Lochblende (Diopter) im Tubus betrachtet werden.<bib id="Raith.etal:2009"/>]]
[[Polarisationsmikroskop:Konoskopie|Konoskopische Betrachtungsweise]]: Durch Einschalten einer zusätzlichen Linse (Amici-Bertrand-Linse) oder Entfernen eines Okulars wird die hintere Brennebene des Objektivs in die mit dem Okular betrachtete Zwischenbildebene abgebildet. Während bei der orthoskopischen Betrachtungsweise jeder Bildpunkt einem Objektpunkt entspricht, ist bei der konoskopischen Betrachtungsweise jedem Bildpunkt ein paralleles Strahlenbündel zugeordnet. Das Bild gibt dann über die Richtungsabhängigkeit der Doppelbrechung Auskunft (soweit sie durch die Apertur erfasst werden kann). Mit dieser Methode ist es somit möglich zu bestimmen, ob ein Kristall optisch einachsig oder zweiachsig sowie optisch positiv oder negativ ist. Die [[Bestimmung der Lichtbrechung|Lichtbrechung von Salzmineralien]] kann relativ leicht bei Kenntnis der [[Lichtbrechung]] des Einbettungsmediums, bzw. Immersionsöles abgeschätzt werden.  
[[Polarisationsmikroskop:Konoskopie|Konoskopische Betrachtungsweise]]: Durch Einschalten einer zusätzlichen Linse (Amici-Bertrand-Linse) oder Entfernen eines Okulars wird die hintere Brennebene des Objektivs in die mit dem Okular betrachtete Zwischenbildebene abgebildet. Während bei der orthoskopischen Betrachtungsweise jeder Bildpunkt einem Objektpunkt entspricht, ist bei der konoskopischen Betrachtungsweise jedem Bildpunkt ein paralleles Strahlenbündel zugeordnet. Das Bild gibt dann über die Richtungsabhängigkeit der Doppelbrechung Auskunft (soweit sie durch die Apertur erfasst werden kann). Mit dieser Methode ist es somit möglich zu bestimmen, ob ein Kristall optisch einachsig oder zweiachsig sowie optisch positiv oder negativ ist. Die [[Bestimmung der Lichtbrechung|Lichtbrechung von Salzmineralien]] kann relativ leicht bei Kenntnis der [[Lichtbrechung]] des Einbettungsmediums, bzw. Immersionsöles abgeschätzt werden.  


<br> Schema eines Polarisationsmikroskopes<ref> http://www.igw.uni-jena.de/mineral/downloads/polarisationsmikr.pdf gesehen 16.07.2010</ref>


<br> Eine genaue Beschreibung der mikroskopischen Mineralanalyse findet sich z.B. bei <bib id="Mueller.etal:2009" /> /&gt;
Eine genaue Beschreibung der mikroskopischen Mineralanalyse findet sich z.B. bei <bib id="Raith.etal:2009" />.


<br> '''Vorteil:'''  
<br> '''Vorteil:'''  


Die Polarisationsmikroskopie ist ein günstige Methode und bei entsprechender Erfahrung auch eine schnelle Methode zur Bestimmung von Salzen. Es wird die Mineralogie und Chemie der Salze bestimmt. Sie ist transportabel und an jedem Ort einsetzbar, sodass auch "empfindliche" Salze direkt bestimmt werden können.  
Die Polarisationsmikroskopie ist ein günstige Methode und bei entsprechender Erfahrung auch eine schnelle Methode zur [[Mikroskopie der Salze|Bestimmung von Salzen]]. Es wird die Mineralogie und Chemie der Salze bestimmt. Einfache kompakte Polarisationsmikrokope sind transportabel und an jedem Ort einsetzbar, sodass auch "empfindliche" Salze direkt vor Ort bestimmt werden können.  


<br> '''Nachteil:'''  
<br> '''Nachteil:'''  


Manche Salze sind nur schwer oder kaum zu identifizieren. Es ist keine quantitative Bestimmung möglich.  
Manche Salze sind nur schwer oder kaum zu identifizieren. Es ist keine quantitative Bestimmung möglich.
 
<br>
 
<br>
 
== Lambda-Plättchen  ==
 
Mit Hilfe des so genannten Lambda-Plättchens/Kompensators kann eine sicherere Bestimmung der Interferenzfarben erfolgen. Dieses Hilfsmittel besteht aus einem Material mit bestimmter Doppelbrechung und kann zusätzlich zu Polarisator und Analysator oberhalb der Probe in den Strahlengang eingebracht werden. Das Lambda-Plättchen ist so hergestellt, dass es die Interferenzfarbe durch seine Doppelbrechung genau um 550 nm, also um den Betrag der Differenz zwischen dem Magenta erster und zweiter Ordnung, verschieben kann. Diese Eigenschaft kann hilfreich sein, wenn zu klären ist, welcher Ordnung eine Interferenzfarbe angehört, weil durch Einschieben des Kompensators die Interferenzfarbe jeweils um eine Ordnung angehoben oder gesenkt wird, je nach Stellung von Kristall und Lambda-Plättchen zueinander. Dabei ändert sich die Intensität des Farbtons und es können durch den Vergleich beide Farbordnungen zugeordnet werden.
 
Außerdem kann mit Hilfe des Lambda-Plättchens die Richtug des größeren Bechungsindexes ermittelt werden. Dazu wird der Kristall in die Hellstellung gedreht und der Kompensator eingeschoben (dieser muss 45° zu der Horizontallinie haben). Erhöhen sich die Interferenzfarben, ist die höherbrechende Richtung des Kristalls parallel zur höherbrechenden Richtung des Kompensators. Werden die Interferenzfarben abgesenkt, befindet sich die höherbrechende Richtung des Kristalls in der niedrigerbrechenden des Kompensators und vice versa. Die Richtungen der höheren und nierdrigeren Doppelbrechung vom Lambda-Plättchen sind in der Regel auf diesem angezeichnet.
 
<br>


==Weblinks==
==Weblinks==
Zeile 43: Zeile 37:
== Literatur  ==
== Literatur  ==


<bibprint />  
<biblist />
 
noch zu erfassen
 
*Der Blick ins Bild, S. Wülfert, 1999
*Methoden der Dünnschliffmikroskopie, G.Müller und M. Raith, 1976
 
== WebLinks  ==
 
*http://e3.physik.uni-dortmund.de/~suter/Vorlesung/Physik_B3_SS03/6.5_Polarisation.pdf, 19.11.2009
*http://www.gemmologie.at/mediaCache/Doppelbrechung_270385.pdf, 19.11.2009
*http://www.physik.uni-jena.de/inst/iao/applets/doppelbrechung/doppelbrechung.html, 19.11.2009
*http://www.microscopy-uk.org.uk/mag/artnov08/rd-crystals.html, 19.11.2009


[[Category:LichtMikroskopie]] [[Category:AHusen]] [[Category:HSchwarz]] [[Category:R-MSteiger]] [[Category:R-CBlaeuer]] [[Category:Bearbeitung]]
[[Category:LichtMikroskopie]] [[Category:Husen,Anika]] [[Category:Schwarz,Hans-Jürgen]] [[Category:R-MSteiger]] [[Category:R-CBlaeuer]] [[Category:Review]]

Aktuelle Version vom 9. Juni 2023, 06:52 Uhr

Autoren: Hans-Jürgen Schwarz, Anika Husen

zurück zu Verfahren zur Salzanalyse

Abstract[Bearbeiten]

Die Methode zur Bestimmung von Salzen mit dem Polarisationsmikroskop wird kurz erläutert und Vor- und Nachteile beim Bestimmen von Salzen werden angeführt.

Einführung[Bearbeiten]


Die Polarisationsmikroskopie [Wuelfert:1999]Titel: Der Blick ins Bild
Autor / Verfasser: Wülfert, Stefan
Link zu Google Scholar
wird insbesondere bei der Betrachtung anisotroper (doppelbrechender) Objekte [1] eingesetzt. Gegenüber den normalen Mikroskopen besitzt das Polarisationsmikroskop einen Polarisator (polarisiertes Licht) in der Beleuchtungseinheit; durch ihn wird das Objekt mit linear polarisiertem Licht beleuchtet. Im Beobachtungsstrahlungsgang befindet sich zusätzlich ein weiterer Polarisator (Analysator), der die Änderung des linear polarisierten Lichtes durch das Objekt zu analysieren gestattet. Ohne Objekt muss bei gekreuztem Polarisator und Analysator (90° Unterschied in der Schwingungsebene des jeweils durchgelassenen Lichts) Dunkelheit herrschen. In der Polarisationsmikroskopie werden die direkte (orthoskopische) oder die indirekte (konoskopische) Betrachtungsweise angewandt. Die orthoskopische Betrachtungsweise entspricht der in der normalen Mikroskopie üblichen Betrachtungsweise. Anisotrope Körper erscheinen bei eingeschaltetem Analysator je nach ihrer Orientierung, der Dicke und Größe der Doppelbrechung[2][3][4] in der dem Gangunterschied zwischen ordentlichen und außerordentlichen Strahl entsprechenden Interferenzfarbe.


A:Im orthoskopischen Strahlengang(Lukenstrahlengang) älterer Polarisationsmikroskope erzeugt das Objektiv ein vergrößertes, höhen-und seitenverkehrtes Zwischenbild des Dünnschliffs. Dieses wird mit dem Okular nochmals vergrößert betrachtet (A-2). In modernen Polarisationsmikroskopen[5] befindet sich das Objekt in der unteren Brennebene des Objektivs, so dass es nach Unendlich abgebildet wird. Das mit dem Okular zu betrachtende reelle Zwischenbild wird durch eine zusätzliche Linse im Tubus (Tubuslinse) erzeugt (A-1). Durch dieses Abbildungsverfahren entsteht zwischen Objektiv und Tubuslinse ein paralleler Strahlengang, der ideale Voraussetzungen für ein störungsfreies Einfügen von Analysatoren, Kompensatoren oder Reflektoren schafft und außerdem eine bessere Korrektur der Abbildungsfehler ermöglicht.
B:Im konoskopischen Strahlengang(Pupillenstrahlengang) dagegen erfolgt die Abbildung paralleler Lichtstrahlen des Strahlenkegels in der oberen Brennebene des Objektivs. Das dort entstehende Interferenzbild (im Falle optisch anisotroper Kristalle) wird mit Hilfe der Amici-Bertrand-Linse vergrößert betrachtet. Ist keine Amici-Bertrand-Linse vorhanden, so kann das Interferenzbild auch durch eine anstelle des Okulars eingesetzten Lochblende (Diopter) im Tubus betrachtet werden.[Raith.etal:2009]Titel: Leitfaden zur Dünnschliffmikroskopie
Autor / Verfasser: Raith, Michael M.; Raase, Peter
Link zu Google Scholar

Konoskopische Betrachtungsweise: Durch Einschalten einer zusätzlichen Linse (Amici-Bertrand-Linse) oder Entfernen eines Okulars wird die hintere Brennebene des Objektivs in die mit dem Okular betrachtete Zwischenbildebene abgebildet. Während bei der orthoskopischen Betrachtungsweise jeder Bildpunkt einem Objektpunkt entspricht, ist bei der konoskopischen Betrachtungsweise jedem Bildpunkt ein paralleles Strahlenbündel zugeordnet. Das Bild gibt dann über die Richtungsabhängigkeit der Doppelbrechung Auskunft (soweit sie durch die Apertur erfasst werden kann). Mit dieser Methode ist es somit möglich zu bestimmen, ob ein Kristall optisch einachsig oder zweiachsig sowie optisch positiv oder negativ ist. Die Lichtbrechung von Salzmineralien kann relativ leicht bei Kenntnis der Lichtbrechung des Einbettungsmediums, bzw. Immersionsöles abgeschätzt werden.


Eine genaue Beschreibung der mikroskopischen Mineralanalyse findet sich z.B. bei [Raith.etal:2009]Titel: Leitfaden zur Dünnschliffmikroskopie
Autor / Verfasser: Raith, Michael M.; Raase, Peter
Link zu Google Scholar
.


Vorteil:

Die Polarisationsmikroskopie ist ein günstige Methode und bei entsprechender Erfahrung auch eine schnelle Methode zur Bestimmung von Salzen. Es wird die Mineralogie und Chemie der Salze bestimmt. Einfache kompakte Polarisationsmikrokope sind transportabel und an jedem Ort einsetzbar, sodass auch "empfindliche" Salze direkt vor Ort bestimmt werden können.


Nachteil:

Manche Salze sind nur schwer oder kaum zu identifizieren. Es ist keine quantitative Bestimmung möglich.

Weblinks[Bearbeiten]

Literatur[Bearbeiten]

[Raith.etal:2009] Raith, Michael M.; Raase, Peter (2009): Leitfaden zur Dünnschliffmikroskopie, online PublikationLink zu Google ScholarLink zum Volltext
[Wuelfert:1999] Wülfert, Stefan (1999): Der Blick ins Bild, Ravensburger BuchverlagLink zu Google Scholar