Halit: Unterschied zwischen den Versionen

Aus Salzwiki
Zur Navigation springen Zur Suche springen
(Die Seite wurde neu angelegt: „Abstract Gips ist eines der wichtigsten Salze, die an z. B. Bauwerken und Wandmalereien für Schäden verantwortlich sind. Vor allem außen exponierte Objekte l…“)
 
Keine Bearbeitungszusammenfassung
Markierung: Manuelle Zurücksetzung
 
(149 dazwischenliegende Versionen von 10 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
Abstract
Autoren: [[Benutzer:Hschwarz|Hans-Jürgen Schwarz]], [[user:NMainusch|Nils Mainusch]]
<br>zurück zu [[Chloride]]
<br>


Gips ist eines der wichtigsten Salze, die an z. B. Bauwerken und Wandmalereien für Schäden verantwortlich sind. Vor allem außen exponierte Objekte leider unter Gipsschäden. Die Eigenschaften, die Schadenswikung, das Vorkommen und auch der Nachweis von Gips werden behandelt. Abbildungen, Mikroaufnahmen und Beispiele aus der Praxis ergänzen und veranschaulichen das Dargelegte. [Bearbeiten] Einleitung


Gips ist eines der heute am häufigsten vorkomenden bauschädlichen Salze. Er kommt in unterschiedlichen Formen und Ausprägungen an fast allen Objekten am Außenbau vor und auch in Innenräumen ist er häufig zu finden. [Bearbeiten] Allgemeines
{{Infobox_Salz
|Footnote=<ref>http://webmineral.com/data/Halite.shtml gelesen 28.07.2010</ref><ref>http://www.mindat.org/min-1804.html gelesen 28.07.2010</ref><ref>http://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Halit gelesen 28.07.2010</ref><ref name=hydrohalit>http://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Hydrohalit gelesen 28.07.2010</ref>
|bild =[[Image:NaCl 27.4.2006-10x.JPG|300px]]
|mineralogischerName=Halit
|chemischerName =Natriumchlorid
|Trivialname =Kochsalz, Steinsalz
|chemFormel =NaCl
|Hydratformen =Natriumchlorid Dihydrat/Hydrohalit (NaCl•2H<sub>2</sub>O)
|Kristallsystem =kubisch
|Deliqueszenzfeuchte =75,4%
|Löslichkeit=6,135 mol/kg
|Dichte =2,163 g/cm<sup>3</sup>
|Molvolumen =27,02 cm<sup>3</sup>/mol
|Molgewicht =58,44 g/mol
|Transparenz =durchsichtig bis durchscheinend
|Spaltbarkeit =vollkommen
|Kristallhabitus =kubische (würfelförmige) Kristalle; körnige, massige Aggregate
|Zwillingsbildung =keine
|Brechungsindices =n<sub>D</sub>=1,5443
|Doppelbrechung =
|optOrientierung=isotrop
|Pleochroismus =
|Dispersion =
|Phasenübergang =
|chemVerhalten =
|Bemerkungen =leicht wasserlöslich
|Literatur =<bib id="Steiger.etal:2014"/> <bib id="Robie.etal:1978"/> <bib id="Dana:1951"/>
}}
== Abstract  ==


<br>
== Vorkommen von Halit  ==


<br>  
Das gemeinhin als Speise- oder Streusalz verwendete Natriumchlorid wird auf dem Wege des bergmännischen Abbaus, der Gewinnung aus Meerwasser oder aus Salzseen nutzbar gemacht.<br>
Der Gehalt an Natriumchlorid in Meerwasser liegt bei etwa 2,7 M.%.<br>


[Bearbeiten] Vorkommen von Gips
== Angaben zu Herkunft und Bildung von Halit an Baudenkmalen  ==


Als eines der am meisten verbreiteten Minerale entsteht Gips beim Ausfall aus wässrigen Lösungen bei Temperaturen unter ca. 40°C. Liegen erhöhte Temperaturen (&gt; 60°C) einer Lösung vor, so wird direkt Anhydrit gebildet. In Form von Gesteinen sind beide Calciumsulfatformen häufig anzutreffen. Natürliche Vorkommen des Halbhydrates existieren nicht. Gips findet sich als Vorkommen in Salzlagerstätten und in Salzwüsten, wo durch den Einschluß von Quarzpartikeln bei der Formierung des Kristalls häufig sogenannte Wüstenrosen entstehen. In Salzlagerstätten bilden Gips und Anhydrit zuweilen einen “Salzhut” aus, d.h. eine mächtige Materialschicht, die sich über anderen Salzvorkommen eines natürlichen Lagers befindet. Künstlich hergestellter Gips entsteht u.a. im Zuge der Entschwefelung von Rauchgasen in Kraftwerken, in denen fossile Brennstoffe verwertet werden. [Bearbeiten] Angaben zu Herkunft und Bildung von Gips an Baudenkmalen
Durch den Eintrag von Materialien, die lösliche Natriumverbindungen enthalten, kann im mineralischen System eines Baudenkmals Natriumchlorid als Ausblühsalz entstehen. Anzuführen ist der hohe Gehalt von Natriumionen in Zementen. Der Eintrag von Natrium– und Chloridionen kann ferner durch belastetes Grund- und Oberflächenwasser erfolgen. Eine Fülle von Reinigungsmaterialien (wie Salzsäure, Abbeizprodukte) und v.a. früher verwendeten Restaurierungsmaterialien (wie Wasserglas) können Natrium – und Chloridionen in Baudenkmäler eintragen. Häufige Quelle für Halit ist ferner Streusalz, welches überwiegend aus Natriumchlorid besteht, und salzhaltiges Meerwasser bei Objekten in Küstennähe.


Die hohe Schadensrelevanz von Gips für Denkmale aus mineralischer Bausubstanz steht wesentlich in Zusammenhang mit der Umwandlungsreaktion Kalk zu Gips. Unter der Einwirkung von SOx-haltiger Luft in Verbindung mit Feuchte können auf diese Weise wichtige Materialkomponeneten von Bauwerken (Kalkmörtel, Verputz, calcitische Gesteine etc.) zu Gips entsprechend dem Chemismus: CaCO3 + H2SO4 → CaSO4 + H2O + CO2 umgewandelt werden. Gips stellt darüberhinaus einen wichtigen Baustoff für die Erstellung von Mörtel und Verputze dar und kann bereits als Gestein und somit originäres Baumaterial Eingang in das Gefüge eines Denkmals gefunden haben. Ähnliches gilt für Anhydrit.


<br> [Bearbeiten] Angaben zum Schadenspotential und zur Verwitterungsaktivität von Gips [Bearbeiten] Lösungsverhalten  
== Lösungsverhalten ==


Gips zählt zur Gruppe der “gering” (vgl.Tabelle Hygroskopizität der Salze und Gleichgewichtsfeuchte) wasserlöslichen Salze und kann somit als wenig mobil bezeichnet werden. Allerdings ist der Fremdioneneinfluß auf die Gipslöslichkeit vergleichsweise groß. So wird die Löslichkeit von Gips durch Halit je nach Konzentrationsverhältnis bis um den Faktor vier erhöht.  
Der häufig auftretende Halit zählt mit einer Löslichkeit von 6.13 mol/kg (20°C) zur Gruppe der leichtlöslichen und somit leicht mobilisierbaren Salzen. Die Löslichkeit verändert sich bei variierender Temperatur im Bereich 10-30°C vergleichsweise wenig.  


Datei:LoeslichkeitGips.jpg  
[[Image:L NaCl.jpg|thumb|left|800px|Abbildung 1:Löslichkeit von Natriumchlorid in Wasser. Aufgetragen ist die Molalität ''m'' [n(NaCl)•kg(H<sub>2</sub>O)<sup>-1</sup>] gegen die Temperatur.]]


<br> Diagramm 1 – Darstellung der temperaturabhängigen Veränderung der Löslichkeit von Gips im Vergleich mit anderen Salzphasen [Angaben nach Stark/Stürmer 1993].
<br clear="all">  
{|border="2" cellspacing="0" cellpadding="4" width="52%" align="left" class="wikitable"
|+''Tabelle 1: Löslichkeit von Halit in Abhängigkeit zur Temperatur nach <bib id="Steiger.etal:2008c"/>. ''                   
|-
|bgcolor = "#F0F0F0"| '''Temperatur'''
|bgcolor = "#F0F0F0" align=center| '''10°C'''
|bgcolor = "#F0F0F0" align=center| '''20°C'''
|bgcolor = "#F0F0F0" align=center| '''30°C'''
|bgcolor = "#F0F0F0" align=center| '''40°C'''
|-
|bgcolor = "#F7F7F7" | Löslichkeit [mol/kg]  
|bgcolor = "#FFFFEO" align=center| 6,11
|bgcolor = "#FFFFEO" align=center| 6,13
|bgcolor = "#FFFFEO" align=center| 6,17
|bgcolor = "#FFFFEO" align=center| 6,22
|}
<br clear=all>


Datei:Gips+NaCl Loeslichkeit.jpg
== Hygroskopizität  ==


<br> Diagramm 2 – Dargestellt ist die Veränderung der Löslichkeit von Gips in Wasser unter Anwesenheit von Halit. Liegt Halit in einer Konzentration von ca. 140 g/l in wäßriger Lösung vor, so lösen sich hierin etwa 8 g Gips. [Angaben nach J.D’Ans, 1933]. [Bearbeiten] Hygroskopizität
[[Image:D NaCl d.jpg|thumb|left|800px|Abbildung 2: Deliqueszenzverhalten von Natriumchlorid in Abhängigkeit der Temperatur. Aufgetragen ist die Wasseraktivität ''a<sub>w</sub>'' gegen die Temperatur.]]
<br clear=all>


Gips besitzt als Reinsalz keinen definierten und durch die relative Feuchte beeinflussten Deliqueszenzpunkt. Bei Überschreiten von 90&nbsp;% r.F. kann es in Gegenwart von Halit allerdings (durch die Feuchtesorption von Halit) zum Auflösen von Gipskristallen kommen; ein Absinken der Feuchtewerte auf ca.75&nbsp;% r.F. bewirkt die Rekristallisation des Gipses [Angaben nach H.J.Schwarz, 1996]. [Bearbeiten] Kristallisationsdruck
Die Deliqueszenzfeuchte von Halit liegt mit einem Wert von ca. 75% in einem Bereich, der bei nordeuropäischen Klimaverhältnissen häufig durchlaufen wird. Temperaturschwankungen beeinflussen den Deliqueszenzpunkt von Halit wenig, anders als bei beispielsweise [[Niter]] oder [[Nitronatrit]].


Bei der Kristallisation aus wäßriger Lösung, die eine Übersättigung im Verhältnis 2:1 aufweist, läßt sich für Gips ein linearer Wachstumsdruck von 28,2-33,4 N/mm2 im Temperaturbereich 0-50°C angeben. Im Vergleich mit anderen bauschädlichen Salzen liegen diese Werte im mittleren Bereich einer berechneten Werteskala, die insgesamt von 7,2 bis 65,4 N/mm2 reicht [nach Winkler, 1975]. [Bearbeiten] Hydratationsverhalten
<br clear=all>
{|border="2" cellspacing="0" cellpadding="4" width="52%" align="left" class="wikitable"
|+''Tabelle 2: Deliqueszenzfeuchte von Natriumchlorid in Temperaturabhängigkeit nach <bib id="Steiger.etal:2014"/>''                   
|-
|bgcolor = "#F0F0F0" align=center| 0°C
|bgcolor = "#F0F0F0" align=center| 10°C
|bgcolor = "#F0F0F0" align=center| 20°C
|bgcolor = "#F0F0F0" align=center| 30°C
|bgcolor = "#F0F0F0" align=center| 40°C
|bgcolor = "#F0F0F0" align=center| 50°C
|-
|bgcolor = "#FFFFEO" align=center| 75,9%r.F.
|bgcolor = "#FFFFEO" align=center| 75,6%r.F.
|bgcolor = "#FFFFEO" align=center| 75,4%r.F.
|bgcolor = "#FFFFEO" align=center| 75,2%r.F.
|bgcolor = "#FFFFEO" align=center| 75,0%r.F.
|bgcolor = "#FFFFEO" align=center| 74,8%r.F.  
|}
<br clear=all>


Das System CaSO4 – H2O: Calciumsulfat kann in drei unterschiedlichen Hydratstufen auftreten, dem oben bezeichneten, kristallwasserlosen Anhydrit, einem Halbhydrat, welches unter Normalbedingungen die instabilste Form darstellt, und Gips. Anhydrit existiert in verschiedenen Modifikationen, wodurch je nach Abhängigkeit der Modifikation des vorliegenden Anhydrit unterschiedliche chemische Eigenschaften (z.B. variierende Löslichkeit in Wasser) feststellbar sind. Das gleiche gilt auch für die Modifikationen des Halbhydrates.


Als Wert für die Übergangstemperatur (in wäßriger Lösung) kann der Bereich 40°C-66°C angegeben werden. Unter normalen Klimabedingungen an Denkmalen entsteht somit beim Ausfall von Calciumsulfat aus einer wäßrigen Lösung in erster Linie Gips. Liegen die Temperatur einer Lösung höher als 40°C-60°C, bildet sich v.a. Anhydrit. Parallel hierzu kommt es zur Bildung des Halbhydrates, welches zwar metastabil ist, beim Ausfall aber zunächst in großer Menge auftritt und dann in eine der stabileren Hydratstufen umgebildet wird.
<br> '''Feuchtesorption:'''<br>Theoretischen Berechnungen zufolge kann 1g NaCl 4,3g Feuchtigkeit aufnehmen. Nachstehend ist die Feuchtesorption bei variierenden relativen Feuchten wiedergegeben:


Bei der Erhitzung des Doppelhydrates (als Feststoff in Abwesenheit von wäßrigem Lösungsmittel) kommt es bei einer Temperatur ab etwa 50°C zum Austreiben von Kristallwasser, und es entsteht das Halbhydrat. Die vollständige Überführung zum Halbhydrat findet erst bei Temperaturen von ca. 100°C statt. Wird das Doppelhydrat längere Zeit auf 500-600°C erhitzt, liegt völlig entwässertes Calciumsulfat vor. Bei Temperaturen über 1000°C erfolgt die Zersetzung in Calciumoxid und SO3. [Bearbeiten] Hydratationsdruck


An einem Objekt vorliegender Gips kann das im Molekül enthaltene Kristallwasser nur bei Temperaturen ab ca. 50°C abgeben, wird also in der Regel nicht dehydrieren. Umgekehrt ist die Einlagerung von Kristallwasser bei Vorliegen von Anhydrit oder Halbhydrat an einem Denkmal aber durchaus möglich. Beide Vorgänge sind mit Volumenveränderungen (von 31,9% beim Übergang Halbhydrat-Gips) und dem Entstehen von Hydratationsdrücken verbunden [Zahlenwerte nach Sperling/Cooke, 1980]. Für den Fall des Überganges Halbhydrat-Gips (Stichwort Gipstreiben) kann bei einer Temperatur im Bereich 0-20°C und einer r.F. von ca. 80% ein Hydratationsdruck von 114 –160 N/mm2 angegeben werden, was extrem hohe Werte darstellt [nach Stark/Stürmer 1996][1]. [Bearbeiten] Umwandlungsreaktionen
<br clear="all">
{|border="2" cellspacing="0" cellpadding="4" width="52%" align="left" class="wikitable sortable"
|+''Tabelle 3:Feuchtesorption in M% nach 56 Tagen nach <bib id="Vogt.etal:1993"/> ''                   
|-
|bgcolor = "#F0F0F0"| '''Lagerungsfeuchte/Salzphase'''
|bgcolor = "#F0F0F0" align=center| '''NaCl'''
|-
|bgcolor = "#F7F7F7" | '''87% r.F.'''
|bgcolor = "#FFFFEO" align=center| 153
|-
|bgcolor = "#F7F7F7" | '''81% r.F.'''
|bgcolor = "#FFFFEO" align=center| 22
|-
|bgcolor = "#F7F7F7" | '''79% r.F.'''
|bgcolor = "#FFFFEO" align=center| 7
|}
<br clear=all>


Wie erläutert hängt der substanzgefährdende Charakter von Gips v.a. mit der Umwandlungsreaktion Calcit-Gips zusammen. Aus Calcit gebildete Gipsmoleküle besitzen ein Volumen, welches das der ursprünglichen Calcitmoleküle um etwa 100% übersteigt. In diesem Zusammenhang ist als relevanter Schadensfaktor die Veränderung der Wasserlöslichkeit zu nennen. Calcit ist mit einer Wasserlöslichkeit von ca. 0,014g/l (20°C) schwerer löslich als Gips, so daß nach Umwandlung zu Gips ein deutlich wasserempfindlicheres System vorliegt. Hingewiesen sei auf die Untersuchungen von Snethlage und Wendler [1998], die den Einfluß von Gips auf die hygrischen Längenänderungen eines bestimmten Sandsteinmaterials analysiert haben und die beobachtete Schadensbildung in erster Linie auf das veränderte Quellverhalten durch den Gipseinfluß erklären.
== Kristallisationsdruck  ==


<br> [Bearbeiten] Analytischer Nachweis [Bearbeiten] Mikrochemie
Bei der Kristallisation aus wässeriger Lösung lässt sich für Halit ein Kristallisationsdruck von 55,4-65,4 N/mm<sup>2</sup> <bib id="Winkler:1975" /> angeben (zum Vergleich die berechneten Angaben der Werteskala anderer bauschädlichen Salze: 7,2-65,4 N/mm<sup>2</sup>). Zu berücksichtigen sind hierbei die vorliegenden Temperatur- und Konzentrationsverhältnisse, so dass die Zahlenwerte nur einen Hinweis auf ein reelles Schadenspotential in puncto Kristallisationsdruck des Salzes geben können. Im Vergleich zu anderen Salzphasen ist der Kristallisationsdruck extrem hoch.


<br> Laboruntersuchung: Gips ist gering wasserlöslich, so daß gipshaltiges Probematerial beim Versetzen mit Aquadest. nur geringfügig in Lösung geht. Wird gipshaltiges Probematerial in Lösung gebracht, entstehen bei vorsichtigem Einengen des Lösungmitteltropfens im Zuge der Rekristallisation zunächst Einzelnadeln und zunehmend nadelige Gipsaggregate im Bereich des Saumes der Lösung. (alternativ kann Probematerial mit Salzsäure versetzt werden, was ebenfalls zur Bildung von Kristallnadeln führt). Im Vergleich zu anderen Salzen, die ebenfalls nadelig rekristallisieren können wie z.B. Natriumcarbonat, weisen Gipsnadeln eine deutlich geringere Länge auf.
== Hydratationsverhalten  ==


<br> [Bearbeiten] Mikroskopie
Unter normalen Bedingungen existiert nur die hydratwasserfreie Form des Salzes. Lediglich beim Ausfall aus einer gesättigten, wässerigen Natriumchloridlösung und einer Temperatur von unter 0,15 °C bildet sich als Bodensatz das Dihydrat Hydrohalit
<ref name=hydrohalit>http://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Hydrohalit gelesen 28.07.2010</ref>.


<br> Brechungsindizes von Gips: nx=1.521 ny=1.523 nz=1.530 Doppelbrechung: D=0.009 Kristallklasse: Monoklin
<!--
=== Hydratationsdruck  ===


<br> Polarisationsmikroskopische Untersuchung: Außer dem typischen, nadeligen Habitus von Gipskristallen (v.a. von rekristallisiertem Material) treten unterschiedliche morphologische Charakteristika auf, die bei der Identifikation von Gips hilfreich sind. Gipspartikel (in Rohprobematerial) zeigen sich häufig in Form von gerundeten Splittern und tafeligen Rhomboedern, an denen deutliche, innere Spaltflächen ablesbar sind. Darüber hinaus ist das Auftreten von Zwillingsformen sowohl bei lattigen Partikeln wie auch Tafeln und Plättchen typisch für Gips. Die Zuweisung der Brechungsindizes erfolgen entsprechend der Immersionsmethode unter Verwendung von Medien mit den Indizes nD=1,518 und nD=1,53, wobei aufgrund der zumeist sehr kleinteiligen Partikel die Überprüfung des Schroeder van der Kolk- Schatten aussagekräftiger und sicherer ist, als der Becke-Linien Test.
=== Umwandlungsreaktionen  ===


<br> Gipskristalle gehören zur Klasse der monoklinen Kristalle zeigen also je nach Ausrichtung des Einzelpartikels unter dem Mikroskop zum einen sowohl parallele, bzw. symmetrische Auslöschung, weisen v.a. jedoch eine charakteristische schiefe Achsenstellung in der Auslöschungsposition auf. An gut ausgebildeten Kristallrhomben ist diese schiefe Auslöschung zumeist klar meßbar. Von allen Calciumsulfaten ist Gips am geringsten doppelbrechend und erscheint bei gekreuzten Polarisatoren mit sehr niedrigen Interferenzfarben, die (natürlich in Abhängigkeit der vorliegenden Partikeldicke) im Bereich grau bis gelblich weiß der ersten Ordnung liegen.
== <br>Analytischer Nachweis  ==


<br> Verwechslungsmöglichkeiten: Gips ist im dargestellten Analyseverfahren eindeutig zuweisbar, sofern die folgenden Untersuchungskriterien eindeutig geklärt sind:
-->


    * geringe Wasserlöslichkeit
== Mikroskopie ==
    * charakteristisch nadelige Morphologie bei rekristallisierten Partikeln
    * alle beobachtbaren Indizes besitzen einen nD –Wert zwischen 1,518 und 1,530
    * Gipskristalle besitzen eine geringe Doppelbrechung und niedrige Interferenzfarben
    * Gipskristalle weisen eine schiefe Auslöschung auf


Salzphasen, die gipsähnliche chemische und optische Eigenschaften aufweisen, sind nachstehend aufgelistet: Salzphase Unterscheidungsmerkmale zu Gips Syngenit; K2Ca(SO4)•2H2O alle beobachtbaren Indizes &lt; 1,518 Tachyhydrit; CaMg2Cl6•12H2O zumeist ein beobachtbarer Index &lt; 1,518 / nur parallele und symmetrische Auslöschung Hydromagnesit; Mg5[OH(CO3)2]2•4H2O ein Index zumeist &gt; 1,53 [Bearbeiten] Photometrie [Bearbeiten] Röntgendiffraktometrie [Bearbeiten] Ionenchromatographie [Bearbeiten] DTA/TG [Bearbeiten] IR-Spektroskopie [Bearbeiten] Umgang mit Gipsschäden [Bearbeiten] Salze und Salzschäden im Bild [Bearbeiten] Am Objekt [Bearbeiten] Unter dem Polarisationsmikrokop Auf dem Objektträger rekristallisiert Gips-1.jpg
===  Laboruntersuchung  ===
Natriumchloridkristalle sind mit großer Zuverlässigkeit anhand morphologischer Merkmale zu identifizieren. Einzelpartikel sind zumeist in Rechteck- oder in Würfelform/Oktaederform ausgebildet und weisen somit deutlich rechte Winkel im Kristallbau auf.<br>


Gipskristalle unter polarisiertem Licht
'''Brechungsindex:'''&nbsp; n<sub>D</sub> = 1,544<br>'''Kristallklasse:'''&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; kubisch<br>


Gips-2.jpg
'''Polarisationsmikroskopische Untersuchung:'''


Gipskristalle unter polarisiertem Licht, Rot I
Natriumchlorid zählt wie Kaliumchlorid zu den wenigen bauschädlichen Salzen des kubischen Kristallsystems. Der Kristall zeigt aufgrund seines isotropen inneren Aufbaus keine Eigenschaften der Doppelbrechung.


<br> Im Dünnschliff von Objektproben Per 270603 5-13 14.jpg
Die Zuweisung des Brechungsindex erfolgt entsprechend der Immersionsmethode in Standart- Immersionsöl mit einem Brechungsindex n<sub>D</sub> =1,518. Halitkristalle weisen in jeder möglichen Stellung die gleiche optische Dichte auf, wodurch es bei der Durchstrahlung von linear polarisiertem Licht zu keiner Geschwindigkeitsveränderung und Umorientierung der Lichtwellen kommt. Bei der Betrachtung mit gekreuzten Polarisatoren sind die Kristalle somit nicht erkennbar, sie verbleiben (richtungsunabhängig) ausgelöscht.  


Gipsgeschädigter Ziegel, St. Jakobi Perleberg
<br> '''Verwechslungsmöglichkeiten:'''<br>


Per 270603 5-13 15.jpg
Die Gruppe der isotropen bauschädlichen Salze beschränkt sich auf Halit, Sylvin und Fluorit; alle diese Phasen können problemlos voneinander unterschieden werden.  


Gipsgeschädigter Ziegel, St. Jakobi Perleberg
<br clear="all">


Per 270603 5-13 16.jpg


Gipsgeschädigter Ziegel, St. Jakobi Perleberg [Bearbeiten] Unter dem Rasterelektronenmikroskop Im Rasterelektronenmikoskop CaSO4-REM-SG2-1.jpeg
{| cellspacing="1" cellpadding="1" border="1" style="width: 498px; height: 85px;"
|+''Tabelle 4:Unterscheidungsmerkmale zu anderen Chloriden''
|-
|bgcolor = "#F0F0F0"| '''Salzphase'''
|bgcolor = "#F0F0F0"| '''Unterscheidungsmerkmale'''
|-
|bgcolor = "#F7F7F7"| [[Sylvin]] KCl
|bgcolor = "#FFFFEO"| Brechungsindex unter 1,518.
|-
|bgcolor = "#F7F7F7"| [[Fluorit]] CaF<sub>2</sub>
|bgcolor = "#FFFFEO"| Brechungsindex unter 1,518, kaum wasserlöslich.
|}


Gipskristalle im REM
<!--


CaSO4-REM-SG2-2.jpeg
=== <br>Röntgendiffraktometrie  ===


Gipskristalle im REM
=== <br>Raman-Stektroskopie  ==


CaSO4-REM-SG2-3.jpeg
=== DTA / TG  ===


Gipskristalle im REM
=== <br>IR-Spektroskopie  ===


CaSO4-REM-SG2-SPC.jpeg
== <br>Umgang mit Halitschäden  ==


Gipskristalle im REM CaSO4-REM-SG3-1.jpeg
-->


Gipskristalle im REM
== Salze und Salzschäden im Bild  ==


CaSO4-REM-SG3-2.jpeg
=== Am Objekt  ===


Gipskristalle im REM
<gallery caption="" widths="200px" heights="150px" perrow="3">


CaSO4-REM-SG3-3.jpeg
Image:Strahlsund_Kochsalz-Kruste.jpg|Halit Kruste auf einer Ziegeloberfläche
Image:Strahlsund_Kochsalz-Whisker.jpg|Halit Whisker
</gallery>


Gipskristalle im REM
=== Unter dem Polarisationsmikrokop  ===


CaSO4-REM-SG3-SPC2.jpeg
<gallery caption="Auskristallisat aus wässrigen Proben auf Objektträger" widths="200px" heights="150px" perrow="3">


Gipskristalle im REM [Bearbeiten] Weblinks
Image:NaCl 27.4.2006-10x (1).JPG|Natriumchlorid, auskristallisiert aus wässriger Lösung auf einem Objektträger
Image:NaCl 27.4.2006-10x (2).JPG|Natriumchlorid, auskristallisiert aus wässriger Lösung auf einem Objektträger
Image:NaCl 27.4.2006-10x (5).JPG|Natriumchlorid, auskristallisiert aus wässriger Lösung auf einem Objektträger
Image:NaCl 27.4.2006-10x (6).JPG|Natriumchlorid, auskristallisiert aus wässriger Lösung auf einem Objektträger
Image:NaCl 27.4.2006-10x.JPG|Natriumchlorid, auskristallisiert aus wässriger Lösung auf einem Objektträger
Image:NaCl+CaSO4 reale Probe 01.JPG|Natriumchlorid und Calciumsulfat in realer Probe, auskristallisiert aus wässriger Lösung auf einem Objektträger
Image:NaCl+CaSO4 reale Probe 02.JPG|Natriumchlorid und Calciumsulfat in realer Probe, auskristallisiert aus wässriger Lösung auf einem Objektträger


<br> http://webmineral.com/data/Gypsum.shtml
</gallery>  


http://www.mindat.org/min-1784.html
<!--
=== Unter dem Rasterelektronenmikroskop  ===


http://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Gips
-->


<br> [Bearbeiten] Literatur
== Weblinks  ==


  1. ↑ J. Stark and S. Stürmer, Bauschädliche Salze. Weimar, 1996, Bib
<references/>
 
== Literatur  ==
 
<!-- System NaCl-H2O wurde von BRAITSCH (1962) und FRENZEL (1980) -->
 
<biblist/>
 
'''Weitere Literatur'''
<!--
<bibprint filter=" title:%NaCl%"/>
-->
[[Category:Halit]] [[Category:Mainusch,Nils]][[Category:Schwarz,Hans-Jürgen]] [[Category:R-MSteiger]] [[Category:Review]] [[Category:Chlorid]] [[Category:Salz]][[Category:Liste]]

Aktuelle Version vom 6. März 2024, 08:04 Uhr

Autoren: Hans-Jürgen Schwarz, Nils Mainusch
zurück zu Chloride


Halit[1][2][3][4]
NaCl 27.4.2006-10x.JPG
Mineralogische Salzbezeichnung Halit
Chemische Bezeichnung Natriumchlorid
Trivialname Kochsalz, Steinsalz
Chemische Formel NaCl
Hydratformen Natriumchlorid Dihydrat/Hydrohalit (NaCl•2H2O)
Kristallsystem kubisch
Deliqueszenzfeuchte 20°C 75,4%
Löslichkeit(g/l) bei 20°C 6,135 mol/kg
Dichte (g/cm³) 2,163 g/cm3
Molares Volumen 27,02 cm3/mol
Molare Masse 58,44 g/mol
Transparenz durchsichtig bis durchscheinend
Spaltbarkeit vollkommen
Kristallhabitus kubische (würfelförmige) Kristalle; körnige, massige Aggregate
Zwillingsbildung keine
Phasenübergang
Chemisches Verhalten
Bemerkungen leicht wasserlöslich
Kristalloptik
Brechungsindices nD=1,5443
Doppelbrechung
Optische Orientierung isotrop
Pleochroismus
Dispersion
Verwendete Literatur
[Steiger.etal:2014]Titel: Weathering and Deterioration
Autor / Verfasser: Steiger, Michael; Charola A. Elena; Sterflinger, Katja
Link zu Google Scholar
[Robie.etal:1978]Titel: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar pressure and higher temperatures
Autor / Verfasser: Robie R.A., Hemingway B.S.; Fisher J.A.
Link zu Google Scholar
[Dana:1951]Titel: Dana's System of Mineralogy
Autor / Verfasser: Dana J.D.
Link zu Google Scholar


Abstract[Bearbeiten]

Vorkommen von Halit[Bearbeiten]

Das gemeinhin als Speise- oder Streusalz verwendete Natriumchlorid wird auf dem Wege des bergmännischen Abbaus, der Gewinnung aus Meerwasser oder aus Salzseen nutzbar gemacht.
Der Gehalt an Natriumchlorid in Meerwasser liegt bei etwa 2,7 M.%.

Angaben zu Herkunft und Bildung von Halit an Baudenkmalen[Bearbeiten]

Durch den Eintrag von Materialien, die lösliche Natriumverbindungen enthalten, kann im mineralischen System eines Baudenkmals Natriumchlorid als Ausblühsalz entstehen. Anzuführen ist der hohe Gehalt von Natriumionen in Zementen. Der Eintrag von Natrium– und Chloridionen kann ferner durch belastetes Grund- und Oberflächenwasser erfolgen. Eine Fülle von Reinigungsmaterialien (wie Salzsäure, Abbeizprodukte) und v.a. früher verwendeten Restaurierungsmaterialien (wie Wasserglas) können Natrium – und Chloridionen in Baudenkmäler eintragen. Häufige Quelle für Halit ist ferner Streusalz, welches überwiegend aus Natriumchlorid besteht, und salzhaltiges Meerwasser bei Objekten in Küstennähe.


Lösungsverhalten[Bearbeiten]

Der häufig auftretende Halit zählt mit einer Löslichkeit von 6.13 mol/kg (20°C) zur Gruppe der leichtlöslichen und somit leicht mobilisierbaren Salzen. Die Löslichkeit verändert sich bei variierender Temperatur im Bereich 10-30°C vergleichsweise wenig.

Abbildung 1:Löslichkeit von Natriumchlorid in Wasser. Aufgetragen ist die Molalität m [n(NaCl)•kg(H2O)-1] gegen die Temperatur.


Tabelle 1: Löslichkeit von Halit in Abhängigkeit zur Temperatur nach [Steiger.etal:2008c]Titel: An improved model incorporating Pitzer's equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code
Autor / Verfasser: Steiger, Michael; Kiekbusch, Jana; Nicolai, Andreas
Link zu Google Scholar
.
Temperatur 10°C 20°C 30°C 40°C
Löslichkeit [mol/kg] 6,11 6,13 6,17 6,22


Hygroskopizität[Bearbeiten]

Abbildung 2: Deliqueszenzverhalten von Natriumchlorid in Abhängigkeit der Temperatur. Aufgetragen ist die Wasseraktivität aw gegen die Temperatur.


Die Deliqueszenzfeuchte von Halit liegt mit einem Wert von ca. 75% in einem Bereich, der bei nordeuropäischen Klimaverhältnissen häufig durchlaufen wird. Temperaturschwankungen beeinflussen den Deliqueszenzpunkt von Halit wenig, anders als bei beispielsweise Niter oder Nitronatrit.


Tabelle 2: Deliqueszenzfeuchte von Natriumchlorid in Temperaturabhängigkeit nach [Steiger.etal:2014]Titel: Weathering and Deterioration
Autor / Verfasser: Steiger, Michael; Charola A. Elena; Sterflinger, Katja
Link zu Google Scholar
0°C 10°C 20°C 30°C 40°C 50°C
75,9%r.F. 75,6%r.F. 75,4%r.F. 75,2%r.F. 75,0%r.F. 74,8%r.F.




Feuchtesorption:
Theoretischen Berechnungen zufolge kann 1g NaCl 4,3g Feuchtigkeit aufnehmen. Nachstehend ist die Feuchtesorption bei variierenden relativen Feuchten wiedergegeben:



Tabelle 3:Feuchtesorption in M% nach 56 Tagen nach [Vogt.etal:1993]Titel: Der Einfluss hygroskopischer Salze auf die Gleichgewichtsfeuchte und Trocknung anorganischer Baustoffe
Autor / Verfasser: Vogt, R.; Goretzki, Lothar
Link zu Google Scholar
Lagerungsfeuchte/Salzphase NaCl
87% r.F. 153
81% r.F. 22
79% r.F. 7


Kristallisationsdruck[Bearbeiten]

Bei der Kristallisation aus wässeriger Lösung lässt sich für Halit ein Kristallisationsdruck von 55,4-65,4 N/mm2 [Winkler:1975]Titel: Stone: Properties, Durability in Man ´s Environment
Autor / Verfasser: Winkler, Erhard M.
Link zu Google Scholar
angeben (zum Vergleich die berechneten Angaben der Werteskala anderer bauschädlichen Salze: 7,2-65,4 N/mm2). Zu berücksichtigen sind hierbei die vorliegenden Temperatur- und Konzentrationsverhältnisse, so dass die Zahlenwerte nur einen Hinweis auf ein reelles Schadenspotential in puncto Kristallisationsdruck des Salzes geben können. Im Vergleich zu anderen Salzphasen ist der Kristallisationsdruck extrem hoch.

Hydratationsverhalten[Bearbeiten]

Unter normalen Bedingungen existiert nur die hydratwasserfreie Form des Salzes. Lediglich beim Ausfall aus einer gesättigten, wässerigen Natriumchloridlösung und einer Temperatur von unter 0,15 °C bildet sich als Bodensatz das Dihydrat Hydrohalit [4].


Mikroskopie[Bearbeiten]

Laboruntersuchung[Bearbeiten]

Natriumchloridkristalle sind mit großer Zuverlässigkeit anhand morphologischer Merkmale zu identifizieren. Einzelpartikel sind zumeist in Rechteck- oder in Würfelform/Oktaederform ausgebildet und weisen somit deutlich rechte Winkel im Kristallbau auf.

Brechungsindex:  nD = 1,544
Kristallklasse:       kubisch

Polarisationsmikroskopische Untersuchung:

Natriumchlorid zählt wie Kaliumchlorid zu den wenigen bauschädlichen Salzen des kubischen Kristallsystems. Der Kristall zeigt aufgrund seines isotropen inneren Aufbaus keine Eigenschaften der Doppelbrechung.

Die Zuweisung des Brechungsindex erfolgt entsprechend der Immersionsmethode in Standart- Immersionsöl mit einem Brechungsindex nD =1,518. Halitkristalle weisen in jeder möglichen Stellung die gleiche optische Dichte auf, wodurch es bei der Durchstrahlung von linear polarisiertem Licht zu keiner Geschwindigkeitsveränderung und Umorientierung der Lichtwellen kommt. Bei der Betrachtung mit gekreuzten Polarisatoren sind die Kristalle somit nicht erkennbar, sie verbleiben (richtungsunabhängig) ausgelöscht.


Verwechslungsmöglichkeiten:

Die Gruppe der isotropen bauschädlichen Salze beschränkt sich auf Halit, Sylvin und Fluorit; alle diese Phasen können problemlos voneinander unterschieden werden.



Tabelle 4:Unterscheidungsmerkmale zu anderen Chloriden
Salzphase Unterscheidungsmerkmale
Sylvin KCl Brechungsindex unter 1,518.
Fluorit CaF2 Brechungsindex unter 1,518, kaum wasserlöslich.


Salze und Salzschäden im Bild[Bearbeiten]

Am Objekt[Bearbeiten]

Unter dem Polarisationsmikrokop[Bearbeiten]


Weblinks[Bearbeiten]

Literatur[Bearbeiten]

[Dana:1951]Dana E.S. (Hrsg.) Dana J.D. (1951): Dana's System of Mineralogy, 7, Wiley & SonsLink zu Google Scholar
[Robie.etal:1978]Robie R.A., Hemingway B.S.; Fisher J.A. (1978): Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar pressure and higher temperatures. In: U.S. Geol. Surv. Bull, 1452 ()Link zu Google Scholar
[Steiger.etal:2008c]Steiger, Michael; Kiekbusch, Jana; Nicolai, Andreas (2008): An improved model incorporating Pitzer's equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code. In: Construction and Building Materials, 22 (8), 1841-1850, Webadresse, https://doi.org/10.1016/j.conbuildmat.2007.04.020Link zu Google Scholar
[Steiger.etal:2014]Steiger, Michael; Charola A. Elena; Sterflinger, Katja (2014): Weathering and Deterioration. In: Siegesmund S.; Snethlage R. (Hrsg.): Stone in Architecture, Springer Verlag Berlin Heidelberg, 223-316, Webadresse, https://doi.org/10.1007/978-3-642-45155-3_4.Link zu Google Scholar
[Vogt.etal:1993]Vogt, R.; Goretzki, Lothar (1993): Der Einfluss hygroskopischer Salze auf die Gleichgewichtsfeuchte und Trocknung anorganischer Baustoffe, unveröffentlichter Bericht.Link zu Google Scholar
[Winkler:1975] Winkler, Erhard M. (1975): Stone: Properties, Durability in Man ´s Environment, Springer Verlag, WienLink zu Google Scholar

Weitere Literatur