Halit: Unterschied zwischen den Versionen

Aus Salzwiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Markierung: Manuelle Zurücksetzung
 
(62 dazwischenliegende Versionen von 9 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<bibimport />
Autoren: [[Benutzer:Hschwarz|Hans-Jürgen Schwarz]], [[user:NMainusch|Nils Mainusch]]
Autoren: [[Benutzer:Hschwarz|Hans-Jürgen Schwarz]], Nils Mainusch  
<br>zurück zu [[Chloride]]  
<br>zurück zu [[Chloride]]  
<br>




{| align="right" style="border: 2px solid rgb(224, 224, 224); padding: 5px; width: 380px; background-color: rgb(249, 249, 249);"
{{Infobox_Salz
|-
|Footnote=<ref>http://webmineral.com/data/Halite.shtml gelesen 28.07.2010</ref><ref>http://www.mindat.org/min-1804.html gelesen 28.07.2010</ref><ref>http://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Halit gelesen 28.07.2010</ref><ref name=hydrohalit>http://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Hydrohalit gelesen 28.07.2010</ref>
| bgcolor="#cccccc" align="center" colspan="2" | '''{{#if: {{{minsalzbez|}}}|{{{minsalzbez}}}|{{PAGENAME}}}}'''<ref>http://webmineral.com/data/Halite.shtml gelesen 28.07.2010</ref><ref>
|bild =[[Image:NaCl 27.4.2006-10x.JPG|300px]]
http://www.mindat.org/min-1804.html<br> gelesen 28.07.2010</ref><ref>http://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Halitl gelesen 28.07.2010</ref>
|mineralogischerName=Halit
|- bgcolor="#dddddd"
|chemischerName =Natriumchlorid
| align="center" colspan="2" | [[Image:NaCl 27.4.2006-10x.JPG|300px]]
|Trivialname =Kochsalz, Steinsalz
|- bgcolor="#dddddd"
|chemFormel =NaCl
| Mineralogische Salzbezeichnung
|Hydratformen =Natriumchlorid Dihydrat/Hydrohalit (NaCl•2H<sub>2</sub>O)
| bgcolor="#99ffaa" | Halit
|Kristallsystem =kubisch
|- bgcolor="#dddddd"
|Deliqueszenzfeuchte =75,4%
| Chemische Bezeichnung
|Löslichkeit=6,135 mol/kg
| bgcolor="#99ffaa" | Natriumchlorid
|Dichte =2,163 g/cm<sup>3</sup>
|- bgcolor="#dddddd"
|Molvolumen =27,02 cm<sup>3</sup>/mol
| Trivialname  
|Molgewicht =58,44 g/mol
| bgcolor="#99ffaa" | Kochsalz, Steinsalz
|Transparenz =durchsichtig bis durchscheinend
|- bgcolor="#dddddd"
|Spaltbarkeit =vollkommen
| Chemische Formel
|Kristallhabitus =kubische (würfelförmige) Kristalle; körnige, massige Aggregate
| bgcolor="#99ffaa" | NaCl
|Zwillingsbildung =keine
|- bgcolor="#dddddd"
|Brechungsindices =n<sub>D</sub>=1,5443
| Hydratformen  
|Doppelbrechung =
| bgcolor="#99ffaa" | Natriumchlorid Dihydrat (NaCl•2H<sub>2</sub>O)
|optOrientierung=isotrop
|- bgcolor="#dddddd"
|Pleochroismus =
| Kristallklasse
|Dispersion =
| bgcolor="#99ffaa" | kubisch
|Phasenübergang =
|- bgcolor="#dddddd"
|chemVerhalten =
| Deliqueszenzfeuchte 20°C
|Bemerkungen =leicht wasserlöslich
| bgcolor="#99ffaa" | -
|Literatur =<bib id="Steiger.etal:2014"/> <bib id="Robie.etal:1978"/> <bib id="Dana:1951"/>
|- bgcolor="#dddddd"
}}
| Dichte (g/cm³)
| bgcolor="#99ffaa" | 2,16g/cm<sup>3</sup>
|- bgcolor="#dddddd"
| Molvolumen  
| bgcolor="#99ffaa" | 27,02cm<sup>3</sup>/mol
|- bgcolor="#dddddd"
| Molgewicht  
| bgcolor="#99ffaa" | 58,44g/mol
|- bgcolor="#dddddd"
| Transparenz  
| bgcolor="#99ffaa" | durchsichtig bis durchscheinend
|- bgcolor="#dddddd"
| Spaltbarkeit  
| bgcolor="#99ffaa" | vollkommen
|- bgcolor="#dddddd"
| Kristallhabitus  
| bgcolor="#99ffaa" | kubische (würfelförmige) Kristalle; körnige, massige Aggregate
|- bgcolor="#dddddd"
| Zwillingsbildung  
| bgcolor="#99ffaa" | keine
|- bgcolor="#dddddd"
| Brechungsindices  
| bgcolor="#99ffaa" | n<sub>D</sub>=1,544
|- bgcolor="#dddddd"
| Doppelbrechung  
| bgcolor="#99ffaa" | -
|- bgcolor="#dddddd"
| Optische Orientierung
| bgcolor="#99ffaa" | isotrop
|- bgcolor="#dddddd"
| Pleochroismus  
| bgcolor="#99ffaa" | -
|- bgcolor="#dddddd"
| Dispersion
| bgcolor="#99ffaa" | -
|- bgcolor="#dddddd"
| Phasenübergang
| bgcolor="#99ffaa" | -
|- bgcolor="#dddddd"
| Chemisches Verhalten
| bgcolor="#99ffaa" | leicht wasserlöslich
|- bgcolor="#dddddd"
| Bemerkungen
| bgcolor="#99ffaa" | -
|}
 
== Abstract  ==
== Abstract  ==


Zeile 87: Zeile 41:
== Angaben zu Herkunft und Bildung von Halit an Baudenkmalen  ==
== Angaben zu Herkunft und Bildung von Halit an Baudenkmalen  ==


Durch den Eintrag von Materialien, die lösliche Natriumverbindungen enthalten, kann im mineralischen System eines Baudenkmals Natriumchlorid als Ausblühsalz entstehen. Anzuführen ist der hohe Gehalt von Natriumionen in Zementen. Der Eintrag von Natrium– und Chloridionen kann ferner durch belastetes Grund- und Oberflächenwasser erfolgen. Eine Fülle von Reinigungsmaterialien (wie Salzsäure, Abbeizprodukte) und v.a. früher verwendeten Restaurierungsmaterialien (wie Wasserglas) können Natrium – und Chloridionen in Baudenkmäler eintragen. Häufige Quelle für Halit ist ferner Streusalz, welches überwiegend aus Natriumchlorid besteht, und salzhaltiges Meerwasser bei Objekten in Küstennähe.<br>
Durch den Eintrag von Materialien, die lösliche Natriumverbindungen enthalten, kann im mineralischen System eines Baudenkmals Natriumchlorid als Ausblühsalz entstehen. Anzuführen ist der hohe Gehalt von Natriumionen in Zementen. Der Eintrag von Natrium– und Chloridionen kann ferner durch belastetes Grund- und Oberflächenwasser erfolgen. Eine Fülle von Reinigungsmaterialien (wie Salzsäure, Abbeizprodukte) und v.a. früher verwendeten Restaurierungsmaterialien (wie Wasserglas) können Natrium – und Chloridionen in Baudenkmäler eintragen. Häufige Quelle für Halit ist ferner Streusalz, welches überwiegend aus Natriumchlorid besteht, und salzhaltiges Meerwasser bei Objekten in Küstennähe.


<br clear=all>


== Lösungsverhalten  ==
== Lösungsverhalten  ==


Das in Norddeutschland häufig auftretende Halit zählt mit einer Löslichkeit von 358 g/l (20°C) zur Gruppe der leichtlöslichen und somit leicht mobilisierbaren Salzen. Die Löslichkeit verändert sich bei variierender Temperatur im Bereich 10-30°C vergleichsweise wenig.  
Der häufig auftretende Halit zählt mit einer Löslichkeit von 6.13 mol/kg (20°C) zur Gruppe der leichtlöslichen und somit leicht mobilisierbaren Salzen. Die Löslichkeit verändert sich bei variierender Temperatur im Bereich 10-30°C vergleichsweise wenig.  
 
[[Image:NaCl s.jpg|thumb|right|400px|Abbildung 1:Phasendiagramm von Halit. Grafik: Michael Steiger]]


<br>  
[[Image:L NaCl.jpg|thumb|left|800px|Abbildung 1:Löslichkeit von Natriumchlorid in Wasser. Aufgetragen ist die Molalität ''m'' [n(NaCl)•kg(H<sub>2</sub>O)<sup>-1</sup>] gegen die Temperatur.]]


{| cellspacing="1" cellpadding="1" border="1" style="width: 350px; height: 72px;"
<br clear="all">
|+ Tabelle 1 Löslichkeit von Halit in Abhängigkeit zur Temperatur [nach <bib id="Stark.etal:1996" /> und <bib id="DAns:1933" />  
{|border="2" cellspacing="0" cellpadding="4" width="52%" align="left" class="wikitable"
|+''Tabelle 1: Löslichkeit von Halit in Abhängigkeit zur Temperatur nach <bib id="Steiger.etal:2008c"/>. ''                   
|-
|-
| Temperatur  
|bgcolor = "#F0F0F0"| '''Temperatur'''
| &nbsp;10°C  
|bgcolor = "#F0F0F0" align=center| '''10°C'''
| &nbsp;20°C  
|bgcolor = "#F0F0F0" align=center| '''20°C'''
| &nbsp;40°C
|bgcolor = "#F0F0F0" align=center| '''30°C'''
|bgcolor = "#F0F0F0" align=center| '''40°C'''
|-
|-
| Löslichkeit [g/l]  
|bgcolor = "#F7F7F7" | Löslichkeit [mol/kg]  
| &nbsp;356,5
|bgcolor = "#FFFFEO" align=center| 6,11
| &nbsp;358,8
|bgcolor = "#FFFFEO" align=center| 6,13
| &nbsp;364,2
|bgcolor = "#FFFFEO" align=center| 6,17
|bgcolor = "#FFFFEO" align=center| 6,22
|}
|}
<br clear=all>
<br clear=all>


== Hygroskopizität  ==
== Hygroskopizität  ==


[[Image:NaCl a.jpg|thumb|right|400px|Abbildung 3: Phasen im T-RH Diagramm von Halit. Grafik: Michael Steiger]]
[[Image:D NaCl d.jpg|thumb|left|800px|Abbildung 2: Deliqueszenzverhalten von Natriumchlorid in Abhängigkeit der Temperatur. Aufgetragen ist die Wasseraktivität ''a<sub>w</sub>'' gegen die Temperatur.]]
<br clear=all>


Die Deliqueszenzfeuchte von Halit liegt mit einem Werte von ca. 75% in einem Bereich, der bei nordeuropäischen Klimaverhältnissen häufig durchlaufen wird. Temperaturschwankungen beeinflussen den Deliqueszenzpunkt von Halit wenig, was unten im Vergleich mit Kaliumnitrat und Natrit veranschaulicht wird.  
Die Deliqueszenzfeuchte von Halit liegt mit einem Wert von ca. 75% in einem Bereich, der bei nordeuropäischen Klimaverhältnissen häufig durchlaufen wird. Temperaturschwankungen beeinflussen den Deliqueszenzpunkt von Halit wenig, anders als bei beispielsweise [[Niter]] oder [[Nitronatrit]].
 
<br clear=all>
{|border="2" cellspacing="0" cellpadding="4" width="52%" align="left" class="wikitable"
|+''Tabelle 2: Deliqueszenzfeuchte von Natriumchlorid in Temperaturabhängigkeit nach <bib id="Steiger.etal:2014"/>''                   
|-
|bgcolor = "#F0F0F0" align=center| 0°C
|bgcolor = "#F0F0F0" align=center| 10°C
|bgcolor = "#F0F0F0" align=center| 20°C
|bgcolor = "#F0F0F0" align=center| 30°C
|bgcolor = "#F0F0F0" align=center| 40°C
|bgcolor = "#F0F0F0" align=center| 50°C
|-
|bgcolor = "#FFFFEO" align=center| 75,9%r.F.
|bgcolor = "#FFFFEO" align=center| 75,6%r.F.
|bgcolor = "#FFFFEO" align=center| 75,4%r.F.
|bgcolor = "#FFFFEO" align=center| 75,2%r.F.
|bgcolor = "#FFFFEO" align=center| 75,0%r.F.
|bgcolor = "#FFFFEO" align=center| 74,8%r.F.  
|}
<br clear=all>




<br> '''Feuchtesorption:'''<br>Theoretischen Berechnungen zufolge kann 1g NaCl 4,3g Feuchtigkeit aufnehmen. Nachstehend ist die Feuchtesorption bei variierenden relativen Feuchten wiedergegeben:  
<br> '''Feuchtesorption:'''<br>Theoretischen Berechnungen zufolge kann 1g NaCl 4,3g Feuchtigkeit aufnehmen. Nachstehend ist die Feuchtesorption bei variierenden relativen Feuchten wiedergegeben:  


<br>


{| cellspacing="1" cellpadding="1" border="1" style="width: 300px; height: 88px;"
<br clear="all">
|+ Tabelle 2:Feuchtesorption in M% nach 56 Tagen nach <bib id=Vogt.etal:1993/>
{|border="2" cellspacing="0" cellpadding="4" width="52%" align="left" class="wikitable sortable"
|+''Tabelle 3:Feuchtesorption in M% nach 56 Tagen nach <bib id="Vogt.etal:1993"/> ''                   
|-
|-
! scope="col" | Lagerungsfeuchte/Salzphase<br>
|bgcolor = "#F0F0F0"| '''Lagerungsfeuchte/Salzphase'''
! scope="col" | Nacl<br>
|bgcolor = "#F0F0F0" align=center| '''NaCl'''
|-
|-
|align="center"| 87% r.F.<br>
|bgcolor = "#F7F7F7" | '''87% r.F.'''
|align="center"| 153<br>
|bgcolor = "#FFFFEO" align=center| 153
|-
|-
|align="center"| 81% r.F.<br>
|bgcolor = "#F7F7F7" | '''81% r.F.'''
|align="center"| 22<br>
|bgcolor = "#FFFFEO" align=center| 22
|-
|-
|align="center"| 79% r.F.<br>
|bgcolor = "#F7F7F7" | '''79% r.F.'''
|align="center"| 7<br>
|bgcolor = "#FFFFEO" align=center| 7
|}
|}
<br clear=all>
<br clear=all>


== Kristallisationsdruck  ==
== Kristallisationsdruck  ==


Bei der Kristallisation aus wässeriger Lösung lässt sich für Halit ein Kristallisationsdruck von 55,4-65,4 N/mm<sup>2</sup> <bib id="Winkler:1975" /> angeben (zum Vergleich die berechneten Angaben der Werteskala anderer bauschädlichen Salze: 7,2-65,4 N/mm<sup>2</sup>). Zu berücksichtigen sind hierbei die vorliegenden Temperatur- und Konzentrationsverhältnisse, so dass die Zahlenwerte nur einen Hinweis auf ein reelles Schadenspotential in puncto Kristallisationsdruck des Salzes geben können.Im Vergleich zu anderen Salzphasen ist der Kristallisationsdruck extrem hoch .  
Bei der Kristallisation aus wässeriger Lösung lässt sich für Halit ein Kristallisationsdruck von 55,4-65,4 N/mm<sup>2</sup> <bib id="Winkler:1975" /> angeben (zum Vergleich die berechneten Angaben der Werteskala anderer bauschädlichen Salze: 7,2-65,4 N/mm<sup>2</sup>). Zu berücksichtigen sind hierbei die vorliegenden Temperatur- und Konzentrationsverhältnisse, so dass die Zahlenwerte nur einen Hinweis auf ein reelles Schadenspotential in puncto Kristallisationsdruck des Salzes geben können. Im Vergleich zu anderen Salzphasen ist der Kristallisationsdruck extrem hoch.


== Hydratationsverhalten  ==
== Hydratationsverhalten  ==


Unter normalen Bedingungen existiert nur die hydratwasserfreie Form des Salzes. Lediglich beim Ausfall aus einer gesättigten, wässerigen Natriumchloridlösung und einer Temperatur von unter 0,15 °C bildet sich als Bodensatz das Dihydrat <bib id=Gmelin />.  
Unter normalen Bedingungen existiert nur die hydratwasserfreie Form des Salzes. Lediglich beim Ausfall aus einer gesättigten, wässerigen Natriumchloridlösung und einer Temperatur von unter 0,15 °C bildet sich als Bodensatz das Dihydrat Hydrohalit
<ref name=hydrohalit>http://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Hydrohalit gelesen 28.07.2010</ref>.


<!--
<!--
Zeile 161: Zeile 134:


-->
-->
== Mikroskopie ==
== Mikroskopie ==


Zeile 173: Zeile 147:
Natriumchlorid zählt wie Kaliumchlorid zu den wenigen bauschädlichen Salzen des kubischen Kristallsystems. Der Kristall zeigt aufgrund seines isotropen inneren Aufbaus keine Eigenschaften der Doppelbrechung.  
Natriumchlorid zählt wie Kaliumchlorid zu den wenigen bauschädlichen Salzen des kubischen Kristallsystems. Der Kristall zeigt aufgrund seines isotropen inneren Aufbaus keine Eigenschaften der Doppelbrechung.  


Die Zuweisung des Brechungsindex erfolt entsprechend der Immersionsmethode in Standart- Immersionsöl mit einem Brechungsindex n<sub>D</sub> =1,518. Halitkristalle weisen in jeder möglichen Stellung die gleiche optische Dichte auf, wodurch es bei der Durchstrahlung von linear polarisiertem Licht zu keiner Geschwindigkeitsveränderung und Umorientierung der Lichtwellen kommt. Bei der Betrachtung mit gekreuzten Polarisatoren sind die Kristalle somit nicht erkennbar, sie verbleiben (richtungsunabhängig) ausgelöscht.  
Die Zuweisung des Brechungsindex erfolgt entsprechend der Immersionsmethode in Standart- Immersionsöl mit einem Brechungsindex n<sub>D</sub> =1,518. Halitkristalle weisen in jeder möglichen Stellung die gleiche optische Dichte auf, wodurch es bei der Durchstrahlung von linear polarisiertem Licht zu keiner Geschwindigkeitsveränderung und Umorientierung der Lichtwellen kommt. Bei der Betrachtung mit gekreuzten Polarisatoren sind die Kristalle somit nicht erkennbar, sie verbleiben (richtungsunabhängig) ausgelöscht.  


<br> '''Verwechslungsmöglichkeiten:'''<br>  
<br> '''Verwechslungsmöglichkeiten:'''<br>  
Zeile 179: Zeile 153:
Die Gruppe der isotropen bauschädlichen Salze beschränkt sich auf Halit, Sylvin und Fluorit; alle diese Phasen können problemlos voneinander unterschieden werden.  
Die Gruppe der isotropen bauschädlichen Salze beschränkt sich auf Halit, Sylvin und Fluorit; alle diese Phasen können problemlos voneinander unterschieden werden.  


<br>  
<br clear="all">  
 


{| cellspacing="1" cellpadding="1" border="1" style="width: 498px; height: 85px;"
{| cellspacing="1" cellpadding="1" border="1" style="width: 498px; height: 85px;"
|+''Tabelle 4:Unterscheidungsmerkmale zu anderen Chloriden''
|-
|-
| '''Salzphase'''  
|bgcolor = "#F0F0F0"| '''Salzphase'''  
| <font color="#818181">&nbsp;'''Unterscheidungsmerkmale zu Calcit'''</font>
|bgcolor = "#F0F0F0"| '''Unterscheidungsmerkmale'''
|-
|-
| Sylvin, KCl  
|bgcolor = "#F7F7F7"| [[Sylvin]] KCl  
| &nbsp;Brechungsindex unter 1,518.
|bgcolor = "#FFFFEO"| Brechungsindex unter 1,518.
|-
|-
| Fluorit, CaF<sub>2</sub>  
|bgcolor = "#F7F7F7"| [[Fluorit]] CaF<sub>2</sub>  
| &nbsp;Brechungsindex unter 1,518, kaum wasserlöslich.
|bgcolor = "#FFFFEO"| Brechungsindex unter 1,518, kaum wasserlöslich.
|}
|}


Zeile 239: Zeile 215:
== Weblinks  ==
== Weblinks  ==


<references />
<references/>


<br>
== Literatur  ==


== Literatur  ==
<!-- System NaCl-H2O wurde von BRAITSCH (1962) und FRENZEL (1980) -->


<bibprint />  
<biblist/>  


[[Category:Halit]] [[Category:HSchwarz]] [[Category:R-MSteiger]] [[Category:Bearbeitung]]
'''Weitere Literatur'''
<!--
<bibprint filter=" title:%NaCl%"/>
-->
[[Category:Halit]] [[Category:Mainusch,Nils]][[Category:Schwarz,Hans-Jürgen]] [[Category:R-MSteiger]] [[Category:Review]] [[Category:Chlorid]] [[Category:Salz]][[Category:Liste]]

Aktuelle Version vom 6. März 2024, 08:04 Uhr

Autoren: Hans-Jürgen Schwarz, Nils Mainusch
zurück zu Chloride


Halit[1][2][3][4]
NaCl 27.4.2006-10x.JPG
Mineralogische Salzbezeichnung Halit
Chemische Bezeichnung Natriumchlorid
Trivialname Kochsalz, Steinsalz
Chemische Formel NaCl
Hydratformen Natriumchlorid Dihydrat/Hydrohalit (NaCl•2H2O)
Kristallsystem kubisch
Deliqueszenzfeuchte 20°C 75,4%
Löslichkeit(g/l) bei 20°C 6,135 mol/kg
Dichte (g/cm³) 2,163 g/cm3
Molares Volumen 27,02 cm3/mol
Molare Masse 58,44 g/mol
Transparenz durchsichtig bis durchscheinend
Spaltbarkeit vollkommen
Kristallhabitus kubische (würfelförmige) Kristalle; körnige, massige Aggregate
Zwillingsbildung keine
Phasenübergang
Chemisches Verhalten
Bemerkungen leicht wasserlöslich
Kristalloptik
Brechungsindices nD=1,5443
Doppelbrechung
Optische Orientierung isotrop
Pleochroismus
Dispersion
Verwendete Literatur
[Steiger.etal:2014]Titel: Weathering and Deterioration
Autor / Verfasser: Steiger, Michael; Charola A. Elena; Sterflinger, Katja
Link zu Google Scholar
[Robie.etal:1978]Titel: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar pressure and higher temperatures
Autor / Verfasser: Robie R.A., Hemingway B.S.; Fisher J.A.
Link zu Google Scholar
[Dana:1951]Titel: Dana's System of Mineralogy
Autor / Verfasser: Dana J.D.
Link zu Google Scholar


Abstract[Bearbeiten]

Vorkommen von Halit[Bearbeiten]

Das gemeinhin als Speise- oder Streusalz verwendete Natriumchlorid wird auf dem Wege des bergmännischen Abbaus, der Gewinnung aus Meerwasser oder aus Salzseen nutzbar gemacht.
Der Gehalt an Natriumchlorid in Meerwasser liegt bei etwa 2,7 M.%.

Angaben zu Herkunft und Bildung von Halit an Baudenkmalen[Bearbeiten]

Durch den Eintrag von Materialien, die lösliche Natriumverbindungen enthalten, kann im mineralischen System eines Baudenkmals Natriumchlorid als Ausblühsalz entstehen. Anzuführen ist der hohe Gehalt von Natriumionen in Zementen. Der Eintrag von Natrium– und Chloridionen kann ferner durch belastetes Grund- und Oberflächenwasser erfolgen. Eine Fülle von Reinigungsmaterialien (wie Salzsäure, Abbeizprodukte) und v.a. früher verwendeten Restaurierungsmaterialien (wie Wasserglas) können Natrium – und Chloridionen in Baudenkmäler eintragen. Häufige Quelle für Halit ist ferner Streusalz, welches überwiegend aus Natriumchlorid besteht, und salzhaltiges Meerwasser bei Objekten in Küstennähe.


Lösungsverhalten[Bearbeiten]

Der häufig auftretende Halit zählt mit einer Löslichkeit von 6.13 mol/kg (20°C) zur Gruppe der leichtlöslichen und somit leicht mobilisierbaren Salzen. Die Löslichkeit verändert sich bei variierender Temperatur im Bereich 10-30°C vergleichsweise wenig.

Abbildung 1:Löslichkeit von Natriumchlorid in Wasser. Aufgetragen ist die Molalität m [n(NaCl)•kg(H2O)-1] gegen die Temperatur.


Tabelle 1: Löslichkeit von Halit in Abhängigkeit zur Temperatur nach [Steiger.etal:2008c]Titel: An improved model incorporating Pitzer's equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code
Autor / Verfasser: Steiger, Michael; Kiekbusch, Jana; Nicolai, Andreas
Link zu Google Scholar
.
Temperatur 10°C 20°C 30°C 40°C
Löslichkeit [mol/kg] 6,11 6,13 6,17 6,22


Hygroskopizität[Bearbeiten]

Abbildung 2: Deliqueszenzverhalten von Natriumchlorid in Abhängigkeit der Temperatur. Aufgetragen ist die Wasseraktivität aw gegen die Temperatur.


Die Deliqueszenzfeuchte von Halit liegt mit einem Wert von ca. 75% in einem Bereich, der bei nordeuropäischen Klimaverhältnissen häufig durchlaufen wird. Temperaturschwankungen beeinflussen den Deliqueszenzpunkt von Halit wenig, anders als bei beispielsweise Niter oder Nitronatrit.


Tabelle 2: Deliqueszenzfeuchte von Natriumchlorid in Temperaturabhängigkeit nach [Steiger.etal:2014]Titel: Weathering and Deterioration
Autor / Verfasser: Steiger, Michael; Charola A. Elena; Sterflinger, Katja
Link zu Google Scholar
0°C 10°C 20°C 30°C 40°C 50°C
75,9%r.F. 75,6%r.F. 75,4%r.F. 75,2%r.F. 75,0%r.F. 74,8%r.F.




Feuchtesorption:
Theoretischen Berechnungen zufolge kann 1g NaCl 4,3g Feuchtigkeit aufnehmen. Nachstehend ist die Feuchtesorption bei variierenden relativen Feuchten wiedergegeben:



Tabelle 3:Feuchtesorption in M% nach 56 Tagen nach [Vogt.etal:1993]Titel: Der Einfluss hygroskopischer Salze auf die Gleichgewichtsfeuchte und Trocknung anorganischer Baustoffe
Autor / Verfasser: Vogt, R.; Goretzki, Lothar
Link zu Google Scholar
Lagerungsfeuchte/Salzphase NaCl
87% r.F. 153
81% r.F. 22
79% r.F. 7


Kristallisationsdruck[Bearbeiten]

Bei der Kristallisation aus wässeriger Lösung lässt sich für Halit ein Kristallisationsdruck von 55,4-65,4 N/mm2 [Winkler:1975]Titel: Stone: Properties, Durability in Man ´s Environment
Autor / Verfasser: Winkler, Erhard M.
Link zu Google Scholar
angeben (zum Vergleich die berechneten Angaben der Werteskala anderer bauschädlichen Salze: 7,2-65,4 N/mm2). Zu berücksichtigen sind hierbei die vorliegenden Temperatur- und Konzentrationsverhältnisse, so dass die Zahlenwerte nur einen Hinweis auf ein reelles Schadenspotential in puncto Kristallisationsdruck des Salzes geben können. Im Vergleich zu anderen Salzphasen ist der Kristallisationsdruck extrem hoch.

Hydratationsverhalten[Bearbeiten]

Unter normalen Bedingungen existiert nur die hydratwasserfreie Form des Salzes. Lediglich beim Ausfall aus einer gesättigten, wässerigen Natriumchloridlösung und einer Temperatur von unter 0,15 °C bildet sich als Bodensatz das Dihydrat Hydrohalit [4].


Mikroskopie[Bearbeiten]

Laboruntersuchung[Bearbeiten]

Natriumchloridkristalle sind mit großer Zuverlässigkeit anhand morphologischer Merkmale zu identifizieren. Einzelpartikel sind zumeist in Rechteck- oder in Würfelform/Oktaederform ausgebildet und weisen somit deutlich rechte Winkel im Kristallbau auf.

Brechungsindex:  nD = 1,544
Kristallklasse:       kubisch

Polarisationsmikroskopische Untersuchung:

Natriumchlorid zählt wie Kaliumchlorid zu den wenigen bauschädlichen Salzen des kubischen Kristallsystems. Der Kristall zeigt aufgrund seines isotropen inneren Aufbaus keine Eigenschaften der Doppelbrechung.

Die Zuweisung des Brechungsindex erfolgt entsprechend der Immersionsmethode in Standart- Immersionsöl mit einem Brechungsindex nD =1,518. Halitkristalle weisen in jeder möglichen Stellung die gleiche optische Dichte auf, wodurch es bei der Durchstrahlung von linear polarisiertem Licht zu keiner Geschwindigkeitsveränderung und Umorientierung der Lichtwellen kommt. Bei der Betrachtung mit gekreuzten Polarisatoren sind die Kristalle somit nicht erkennbar, sie verbleiben (richtungsunabhängig) ausgelöscht.


Verwechslungsmöglichkeiten:

Die Gruppe der isotropen bauschädlichen Salze beschränkt sich auf Halit, Sylvin und Fluorit; alle diese Phasen können problemlos voneinander unterschieden werden.



Tabelle 4:Unterscheidungsmerkmale zu anderen Chloriden
Salzphase Unterscheidungsmerkmale
Sylvin KCl Brechungsindex unter 1,518.
Fluorit CaF2 Brechungsindex unter 1,518, kaum wasserlöslich.


Salze und Salzschäden im Bild[Bearbeiten]

Am Objekt[Bearbeiten]

Unter dem Polarisationsmikrokop[Bearbeiten]


Weblinks[Bearbeiten]

Literatur[Bearbeiten]

[Dana:1951]Dana E.S. (Hrsg.) Dana J.D. (1951): Dana's System of Mineralogy, 7, Wiley & SonsLink zu Google Scholar
[Robie.etal:1978]Robie R.A., Hemingway B.S.; Fisher J.A. (1978): Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar pressure and higher temperatures. In: U.S. Geol. Surv. Bull, 1452 ()Link zu Google Scholar
[Steiger.etal:2008c]Steiger, Michael; Kiekbusch, Jana; Nicolai, Andreas (2008): An improved model incorporating Pitzer's equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code. In: Construction and Building Materials, 22 (8), 1841-1850, Webadresse, https://doi.org/10.1016/j.conbuildmat.2007.04.020Link zu Google Scholar
[Steiger.etal:2014]Steiger, Michael; Charola A. Elena; Sterflinger, Katja (2014): Weathering and Deterioration. In: Siegesmund S.; Snethlage R. (Hrsg.): Stone in Architecture, Springer Verlag Berlin Heidelberg, 223-316, Webadresse, https://doi.org/10.1007/978-3-642-45155-3_4.Link zu Google Scholar
[Vogt.etal:1993]Vogt, R.; Goretzki, Lothar (1993): Der Einfluss hygroskopischer Salze auf die Gleichgewichtsfeuchte und Trocknung anorganischer Baustoffe, unveröffentlichter Bericht.Link zu Google Scholar
[Winkler:1975] Winkler, Erhard M. (1975): Stone: Properties, Durability in Man ´s Environment, Springer Verlag, WienLink zu Google Scholar

Weitere Literatur