Salze und Salzgemische: Unterschied zwischen den Versionen

Aus Salzwiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 63: Zeile 63:


In Bezug auf stark hygroskopische Salze wie Calciumnitrat oder Calciumchlorid liegen in den Phasendiagrammen zwar keine Phasengrenzen für mögliche metastabile Phasen vor, jedoch sind metastabile Zustände bei diesen Salzen trotzdem relevant. Die Phasengrenze des Gleichgewichts zwischen Lösung und kristallinem Salz gibt zwar aus thermodynamischer Sicht den Punkt an, bei dem das Salz auskristallisieren müsste, um eine gesättigte Lösung zu bilden. Da einige dieser Salzlösungen jedoch teilweise stark übersättigen können, kann die Lösung auch unterhalb der Deliqueszenzfeuchte als metastabiler Zustand vorliegen.[2]
In Bezug auf stark hygroskopische Salze wie Calciumnitrat oder Calciumchlorid liegen in den Phasendiagrammen zwar keine Phasengrenzen für mögliche metastabile Phasen vor, jedoch sind metastabile Zustände bei diesen Salzen trotzdem relevant. Die Phasengrenze des Gleichgewichts zwischen Lösung und kristallinem Salz gibt zwar aus thermodynamischer Sicht den Punkt an, bei dem das Salz auskristallisieren müsste, um eine gesättigte Lösung zu bilden. Da einige dieser Salzlösungen jedoch teilweise stark übersättigen können, kann die Lösung auch unterhalb der Deliqueszenzfeuchte als metastabiler Zustand vorliegen.[2]
==Salzmischungen==
In den meisten realen Objekten des kulturellen Erbes liegen Gemische mehrere Ionen und somit auch mehrerer Salze vor, wodurch ihre Betrachtung komplizierter wird. Eine Vorhersage über ihr Verhalten unter bestimmten klimatischen Bedingungen ist nicht mehr so einfach möglich wie für Einzelsalze, bei denen Werte für die Deliqueszenzfeuchte und Hydratationsgleichgewichte aus den Phasendiagrammen abgelesen werden können. Die verschiedenen Salze im Gemisch beeinflussen sich im Hinblick auf ihre Löslichkeiten gegenseitig, so dass Charakteristika wie die Sättigungsfeuchten der Einzelsalze nicht mehr gegeben sind. Somit kann dann bei einer gegebenen Temperatur beispielsweise nicht mehr anhand eines spezifischen Werts abgelesen werden, ab wann das Salz Wasserdampf aus der Umgebung aufnimmt. Bei Salzmischungen muss ein Bereich der klimatischen Bedingungen berücksichtigt werden, in welchem verschiedene Phasen aus dem Gemisch auskristallisieren können. Der Einfluss weiterer Salze auf ein vorliegendes Salz der Form M<sub><i>ν</i>,M</sub>X<sub><i>ν</i>,X</sub>∙<i>n</i>H<sub>2</sub>O kann anhand des thermodynamischen Löslichkeitsprodukts (Gleichung 2) verdeutlicht werden:
Durch ein weiteres Salz wird die Löslichkeit sowohl beeinfluss, wenn ein gleichioniger Zusatz vorliegt (dann wird <i>m</i><sub>M</sub> beziehungsweise <i>m</i><sub>X</sub> verändert), als auch wenn dies nicht zutrifft (dann werden trotzdem <i>γ</i><sub>M</sub> und <i>γ</i><sub>X</sub> beeinflusst).[1]
Im Folgenden soll je ein Beispiel für einen gleich- und einen fremdionigen Zusatz gezeigt werden.
Als Beispiel für einen gleichionigen Zusatz soll das System KCl-NaCl-H<sub>2<sub>O betrachtet werden. Im Diagramm sind die Molalitäten von KCl gegen die von NaCl aufgetragen. Durch das Vorliegen von Chlorid-Ionen in beiden Salzen, wird <i>m</i><sub>X</sub> der Salze (s. Gleichung 1) beeinflusst. Steigt die Konzentration des jeweils anderen Salzes und damit die Chlorid-Konzentration im Gemisch, so nimmt die Löslichkeit des betrachteten Salzes ab. Wird eine Lösung der Zusammensetzung des Punktes A im Diagramm betrachtet, so würde sich die Lösung bei der Verdunstung von Wasserdampf aus der Lösung entlang der Linie AB aufkonzentrieren. An Punkt B wäre Sättigung in Bezug auf KCl erreicht, so dass zunächst dieses Salz aus dem Gemisch auskristallisiert. Da sich die Lösungszusammensetzung durch weitere Verdunstung und durch die Kristallisation von Kaliumchlorid weiter verändert, ist der Kristallisationsverlauf am Punkt B noch nicht abgeschlossen. Im Folgenden kristallisiert KCl entlang seiner Löslichkeitskurve weiter aus, wodurch die Kaliumkonzentration abnimmt, Natriumchlorid sich aber durch die weitere Verdunstung weiter aufkonzentriert. Der Endpunkt C der Kristallisation ist erreicht, wenn Sättigung auch in Bezug auf NaCl erreicht ist, so dass eine dann fortschreitende Verdunstung zur vollständigen Trocknung und Kristallisation beider Phasen führen würde.[2]
Abbildung NaCl-KCl-H2O
Dass in Salzmischungen auch die Sättigungsfeuchten beeinflusst werden, zeigt das folgende Diagramm, in dem die Gleichgewichtsfeuchten der jeweiligen gesättigten Lösungen gezeigt sind. In dem Diagramm ist die relative Luftfeuchtigkeit gegen die Lösungszusammensetzung aufgetragen. Die Lösungszusammensetzung wiederum wird in diesem Falle als Stoffmengenanteil  der Natriumchlorid-Konzentration angegeben. Als Stoffmengenanteil wird die Menge einer Komponente des Gemischs in Mol in Bezug auf die Gesamtmenge aller Komponenten bezeichnet. Bei kleinen Stoffmengenanteilen überwiegt demnach Kaliumchlorid in dem Gemisch, bei einem Anteil von 0.5 liegen gleiche molale Mengen Kalium- und Natriumchlorid vor. Wird auch bei diesem Diagramm die Mischung der Zusammensetzung A betrachtet, entspricht die relative Feuchte, die mit dieser Lösung im Gleichgewicht steht 94.2 % RH. Verdunstet Wasser aus der Lösung, wird bei Punkt B Sättigung in Bezug auf KCl erreicht, die relative Luftfeuchtigkeit, die an diesem Punkt mit der gesättigten Lösung und dem kristallinen Salz im Gleichgewicht steht, beträgt 80.1 % RH. Die eigentliche Deliqueszenzfeuchte von KCl beträgt bei 20 °C 85 % RH, so dass die Kristallisation im Gemisch erst bei niedrigeren Feuchten einsetzt. Diese kann auch wie bei der zur Lösung gehörenden Feuchte als Gleichgewichtsfeuchte bezeichnet werden, aber auch als Sättigungsfeuchte des Punktes B. Wird die relative Luftfeuchte weiter gesenkt, kommt es bei 72.5 % RH zum Kristallisationsendpunkt. Wird im Vergleich zu den Punkten A, B und C auf analoge Weise von einem Punkt der Lösungszusammensetzung bei Stoffmengenanteilen >0.73 von Natriumchlorid ausgegangen, zeigt sich, dass auch in diesem Fall die Kristallisation von zuerst gebildetem Natriumchlorid bei geringerer Luftfeuchtigkeit erfolgt als es die Deliqueszenzfeuchte des Einzelsalzes vermuten lassen würde. Das Diagramm verdeutlich auch, dass ein einzelner (kritischer) Wert, bei dem die Kristallisation des Salzes erfolgt, im Falle von Gemischen nicht ausreichend ist. Hier muss vielmehr ein Bereich der relativen Feuchte betrachtet werden, in welchem die Kristallisation kontinuierlich voranschreitet.[10–12] Die obere Grenze des Bereichs der relativen Feuchte wird durch die ursprüngliche Zusammensetzung des Gemischs bestimmt. Die untere Grenze der relativen Feuchte liegt am Kristallisationsendpunkt vor, an dem beide Phasen in fester Form gemeinsam existieren. Der Wert der unteren Grenze wird auch als gemeinsame Deliqueszenzfeuchte (engl.: mutual deliquescence humidity; MDRH) beschrieben, da sie den Wert der relativen Feuchte angibt, bei der eine gemischte Lösung im Gleichgewicht mit den weiteren kristallinen Salzen des Gemischs vorliegen kann.[1]
Abbildung NaCl-KCl-H2O 2
Für eine Situation am realen Bauwerk ist das beschriebene Verhalten von Salzmischungen ebenfalls relevant. Kommt es beim Transport eines Salzgemischs zunächst zur Kristallisation des einen Salzes, wird ein gewisser Teil des Gemischs immobilisiert. Während des weiteren Transports des verbleibenden Gemischs kristallisieren weitere Mengen dieses Salzes aus, die zweite Phase allerdings erst am Kristallisationsendpunkt und auf den Ort am Objekt bezogen an einer anderen Position. In Ausblühungen am Bauwerk liegt dann nicht mehr die Ausgangsmischung vor, es kommt viel mehr zu einer Fraktionierung des Gemischs. Für die lokal gebildeten Phasen gilt hinsichtlich ihrer Deliqueszenz und Wasseraufnahme nicht mehr die beschriebene gemeinsame Deliqueszenzfeuchte, sondern eher die Deliqueszenzfeuchte der reinen Phase.[1]
In dem nächsten Beispiel wird das Verhalten der Salzmischungen noch etwas komplizierter. Liegen in einem Gemisch auch Salze vor, die in verschiedenen Hydratstufen vorkommen können, wird nicht nur der Aktivitätskoeffizient beeinflusst, sondern auch die Wasseraktivität. Bei dem Gemisch NaCl-Na<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>O nimmt die Löslichkeit von Mirabilit trotz eines gleichionigen Zusatzes bei hohen Konzentrationen von Natriumchlorid nochmal zu. Da die Wasseraktivität der Lösung bei steigender Konzentration (also Verdunstung von Wasser) sinkt, erhöht sich die Löslichkeit der Hydratsalze nach einem vorübergehenden Abfall, was am Beispiel des Löslichkeitsdiagramms bei 10 °C verdeutlicht wird. Da das Thenardit-Mirabilit-Dehydratationsgleichgewicht stark temperaturabhängig ist und zudem von der Wasseraktivität abhängt, gilt dieses Verhalten jedoch nur bei Temperaturen unterhalb von 18 °C. Liegen höhere Temperaturen vor, so kommt es bei der Kristallisation aus einer solchen gemischten Salzlösung zur Dehydratation des Mirabilits. Unterhalb dieser Temperatur kann die Umwandlung nicht erfolgen, da die relative Feuchte für die Dehydratation (graue Linie im Phasendiagramm von Na<sub>2</sub>SO<sub>4</sub>, für die Mischung bei 25 °C graue gestrichelte Linie im 2. Diagramm des Gemischs) dann unterhalb der Deliqueszenzfeuchte des Gemischs (jeweils graue Linien im 2. Diagramm des Gemischs) liegt. Erst wenn die Gleichgewichtsfeuchte der Umwandlung die Deliqueszenzfeuchte übertrifft, kann Dehydration oder Hydratation in Gegenwart einer Lösung erfolgen. Durch den Zusammenhang der Wasseraktivität mit dem Dehydratationsgleichgewicht kann die Dehydratation von Mirabilit bei Anwesenheit anderer Salze schon bei niedrigeren Temperaturen stattfinden, bei denen Thenardit im reinen Na<sup>+</sup>-SO<sub>4</sub><sup>2-</sup>-H<sub>2</sub>O System im Beisein einer Lösung thermodynamisch nicht stabil wäre. Für reale Objekte kann dies einen wichtiger Aspekt darstellen, da die Hydratation in Anwesenheit einer Lösung weniger erschwert wird. Dadurch können Hydratationsreaktionen schneller ausgelöst werden als bei einer Hydratation ausgelöst durch Wasserdampf, wodurch mögliche Schädigungen des Materials verstärkt werden können. Eine solche Gefahr liegt besonders dann vor, je hygroskopischer das weitere Salz im Gemisch ist, da die Deliqueszenzfeuchte des Gemischs dann geringere Werte annimmt und die Gleichgewichtsfeuchte der Mirabilit-Thenardit-Umwandlung häufiger darüber liegt. Zu beachten ist, dass die Werte der Gleichgewichtsfeuchte für die Umwandlung durch andere Salze nicht beeinflusst werden. Ausschlaggebend ist lediglich, ob die Werte der Umwandlung oberhalb oder unterhalb der Deliqueszenzfeuchte des Gemischs liegen.[1]
Abbildung NaCl Na2SO4
Abbildung NaCl Na2SO4 2





Version vom 5. März 2019, 16:48 Uhr

Autor: Amelie Stahlbuhk
zurück zu SalzWiki:Portal


Dieser Artikel wird gerade neu erstellt und ist noch nicht vollständig.



Abstract

Grundlegende Eigenschaften von Salzen und Salzgemischen werden zusammen mit Erläuterungen zu Phasen- und Löslichkeitsdiagrammen beschrieben. Dabei soll eine Einschränkung auf Salze erfolgen, die im Bereich der Salzkristallisation auf Objekten des Kulturguts Relevanz haben.


Einzelnachweise

Literatur