Schadensmechanismen: Unterschied zwischen den Versionen

Aus Salzwiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 80: Zeile 80:
<biblist/>  
<biblist/>  


[[Category:Schadensmechanismen]] [[Category:MSteiger]] [[Category:Schwarz,Hans-Jürgen]] [[Category:R-MSteiger]] [[Category:Review]]
[[Category:Schadensmechanismen]] [[Category:Steiger,Michael]] [[Category:Schwarz,Hans-Jürgen]] [[Category:R-MSteiger]] [[Category:Review]]

Version vom 21. Februar 2012, 14:38 Uhr

Autoren: Michael Steiger, Hans-Jürgen Schwarz

zurück zu Salzwiki:Portal

Abstract[Bearbeiten]

Es werden die Modelle, die zu salzbedingten Schäden führen können, vorgestellt.

Einleitung[Bearbeiten]

Salze können in porösen Materialien wie z. B. Sandstein, Ziegel und Malschichten aber auch durch Reaktion an geeigneten Oberflächen Schäden verursachen. Allen Schäden ist gemein, dass sie fast ausschließlich immer in Zusammenhang mit Wasser auftreten, d.h. umgekehrt, dass ohne Wasser - in welcher Form auch immer - auch keine Schadensprozesse in Gang gesetzt werden können.

Die Schadensmechanismen, die in diesem Kapitel beschrieben werden, beziehen sich auf Schäden an anorganischen, nicht metallischen Oberflächen, bzw. in anorganischen, nicht metallischen porösen Systemen. Schäden an metallischen Materialien liegen meist andere Prinzipien zugrunde und werden in einem eigenen Kapitel abgehandelt.

Die Schadensmechanismen basieren auf Modellvorstellungen der Kristallisationsvorgänge und der Änderungen der physikalisch-chemischen Bedingungen im Porenraum. Es ist davon auszugehen, dass in Einzelfällen auch mehrere Schadensprozesse zusammenwirken können.

Übersicht über die Gliederung zum Thema Schadensmechanismen[Bearbeiten]

In der älteren Literatur (z.B [Correns:1926]Titel: Über die Erklärung der sogenannten Kristallisationskraft
Autor / Verfasser: Correns, Carl W.
Link zu Google Scholar
, [Winkler:1975]Titel: Stone: Properties, Durability in Man ´s Environment
Autor / Verfasser: Winkler, Erhard M.
Link zu Google Scholar
, [Duttlinger.etal:1993]Titel: Salzkristallisation und Salzschadensmechanismen
Autor / Verfasser: Duttlinger, Werner; Knöfel, Dietbert
Link zu Google Scholar
) werden immer wieder folgende Arten von Schadensmechanismen, die mit Salzen in direktem Zusammenhang stehen oder aber durch Salze verstärkt werden, genannt, auf die im Folgenden kurz eingegangen werden soll:


Linearer Wachstumsdruck[Bearbeiten]

Der lineare Wachstumsdruck ist derjenige Druck, bis zu dessen Höhe ein Kristall gegen eine Belastung noch wachsen kann oder umgekehrt formuliert, der maximale Druck, den ein wachsender Kristall ausüben kann.

Der lineare Wachstumsdruck ist insbesondere abhängig vom Grad der Übersättigung der Salzlösung. Die in der Literatur vorhandenen Berechnungen gehen auf Correns und Steinborn zurück [Correns.etal:1939]Titel: Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft
Autor / Verfasser: Correns, Carl W.; Steinborn, W.
Link zu Google Scholar
.


Porenabhängiger Kristallisationsdruck[Bearbeiten]

Kristalle in den großen Poren wachsen auf Kosten derjenigen in den kleinen Poren. Die Kristalle in den großen Poren mit dem niedrigeren Chemischen Potential wachsen zunächst bis der Porenraum gefüllt ist und dann solange weiter, bis ihr chemisches Potential durch Druckerhöhung in der großen Pore auf das Niveau in der kleinen Pore gehoben ist. Demzufolge ist bei einer Porenverteilung mit zwei deutlich unterschiedlichen Maxima eher mit Schäden durch Kristallisation von Salzen zu rechnen [Snethlage:1984]Titel: Steinkonservierung, Forschungsprogramm des Zentrallabors für Denkmalpflege 1979-1983, Bericht für die Stiftung Volkswagenwerk. Arbeitshefte des Bayerischen Landesamtes für Denkmalpflege
Autor / Verfasser: Snethlage, Rolf
Link zu Google Scholar
.

Hydrostatischer Kristallisationsdruck[Bearbeiten]

Bei bestimmten Salzen [Correns.etal:1939]Titel: Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft
Autor / Verfasser: Correns, Carl W.; Steinborn, W.
Link zu Google Scholar
ist das Volumen von 'Salz + Lösung' größer als das der gesättigten Lösung. Kristallisiert dieses Salz dann in der Pore aus und verschließen die ausscheidenden Kristalle die Porenausgänge, so kann es bei der weiteren Salzkristallisation zu einem allseitigen hydrostatischen Druck auf die Porenwandungen kommen.


Hydratationsdruck[Bearbeiten]

Zahlreiche bauschädliche Salze liegen abhängig von Temperatur und relativer Luftfeuchte in verschiedenen Hydratstufen vor, d.h. es existieren von ihnen Salzphasen mit zum Teil deutlich unterschiedlichem Wassergehalt. Die Bildung der neuen Phase ist sowohl nach kompletter Auflösung des alten Kristalls, als auch durch Umbau des Kristalls im festen Zustand vorstellbar. Der Einbau von Wasser in das Kristallgitter ist mit einer Volumenzunahme verbunden und übt somit einen Druck auf eine Begrenzung aus.

Chemomechanische Effekte[Bearbeiten]

Die Eigenschaften eines Stoffes sind nicht nur von seiner Zusammensetzung abhängig, sondern auch von seinen Umgebungsbedingungen. Temperatur, Druck und auch Stoffe mit denen er in Kontakt steht und kommt, beeinflussen seine Eigenschaften. Durch Salzlösungen können infolge der Veränderungen der elektrischen Eigenschaften diese ein signifikant anderes Verhalten zeigen als bei Abwesenheit von Salzen. Insbesondere das Zeta-Potential, also das die elektrische Doppelschicht kennzeichnende elektrische Potential, spielt in diesem Zusammenhang eine Rolle. Für viele Materialien besteht eine enge Wechselbeziehung zwischen Zeta-Potential und verschiedenen mechanischen Eigenschaften derart, dass z.B. Härte, Bruchzähigkeit oder Festigkeit maximal werden, wenn das Zeta-Potential verschwindet. Über diesen Mechanismus können Salze das Verhalten von Materialien beeinflussen. Dabei können in der Doppelschicht bei Nichtmetallen so hohe Feldstärken entstehen, dass die Beweglichkeit von Strukturfehlern (Versetzungen, Risse) beeinflusst wird. Dadurch werden auch die technischen Eigenschaften verändert, ohne dass spezifische Reaktionen mitwirken müssen.


Dynamisch synergetische Effekte[Bearbeiten]

Beim Austrocknen von Salzlösungen bleiben i.a. poröse Filme zurück, die Wasser oder Lösung transportieren können. Diese porösen Strukturen sind infolge ihrer hohen spezifischen Oberfläche extrem hygroskopisch und schon Änderungen der Luftfeuchtigkeit, in jedem Fall aber direkte Wasserzufuhr, ändern auf der Oberfläche der Porenwandung aufsitzende Salzstrukturen in Größe und Form. Diese Deformationen führen zu Schubspannungen an der Substratoberfläche, die zeitlich veränderlich sind. Salzinduzierte Schäden sind nach dieser Vorstellung [Puehringer:1983]Titel: Salt Disintegration
Autor / Verfasser: Pühringer, Josef
Link zu Google Scholar
das Resultat von vielen aufeinander folgenden Belastungszyklen mit verhältnismäßig kleiner Intensität.


Hygrische Effekte[Bearbeiten]

Viele poröse Baustoffe erfahren in Abhängigkeit vom Feuchtegehalt ein Dehnen und Schwinden, die wenn sie in steigem Wechsel auftreten, zu starken Schäden führen können. In welchem Ausmaß diese Prozesse erfolgen, hängt von der Zusammensetzung, der Porenstruktur und dem Feuchteangebot ab. Sind diese Stoffe zusätzlich mit hygroskopischen Salzen belastet, so stellt sich eine neue, im Vergleich zum salzfreien Stoff, höhere Gleichgewichtsfeuchte ein, die von der Salzart und -konzentration abhängt (siehe auch [Vogt.etal:1993]Titel: Der Einfluss hygroskopischer Salze auf die Gleichgewichtsfeuchte und Trocknung anorganischer Baustoffe
Autor / Verfasser: Vogt, R.; Goretzki, Lothar
Link zu Google Scholar
).

Thermische Effekte[Bearbeiten]

Da feuchte Baustoffe deutlich bessere Wärmeleiter sind als trockene Baustoffe, kann eine erhöhte Materialfeuchte zu einer Veränderung der Temperaturunterschiede in einem Baustoff und damit zu einer Veränderung des thermischen Dehnens und Schwindes führen. Da ein Temperaturausgleich schneller erfolgt, werden die thermischen Spannungen in der Regel abnehmen.

Neue Erkenntnisse zu den Schadensprozessen[Bearbeiten]

In den letzten Jahren wurde durch intensive Forschungsrarbeiten diese bisherigen Modelle der Schadensmechanismen durch Salze überprüft und mussten z.T. modifiziert werden.

Literatur[Bearbeiten]

[Becker.etal:1916]Becker, G.F.; Day, A.L. (1916): Notes on the Linear Force of Growing Crystals. In: Journal of Geology, 24 (4), 313-333, WebadresseLink zu Google Scholar
[Bruhns.etal:1913]Bruhns, W.; Mecklenburg, W. (1913): Über die sogenannte "Kristallisationskraft". In: Sechster Jahresbericht des Niedersächsischen Geologischen Vereins zu Hannover, (), 92-115Link zu Google Scholar
[Buil:1983]Buil, Michel (1983): Thermodynamics and Experimental Study of the Crystallization Pressure of Water Soluble Salts. In: F.H. Wittmann (Hrsg.): Materials Science and Restoration, Lack und Chemie, Filderstadt, 373-377.Link zu Google Scholar
[Correns.etal:1939]Correns, Carl W.; Steinborn, W. (1939): Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft. In: Zeitschrift für Kristallografie, (101), 117-133Link zu Google Scholar
[Correns:1926]Correns, Carl W. (1926): Über die Erklärung der sogenannten Kristallisationskraft. In:: Preuss. Akad. der Wissensch, Sitzungsband, de Gruyter, 81-88.Link zu Google Scholar
[Coussy:2006]Coussy, O. (2006): Deformation and stress from in-pore drying-induced crystallization of salt. In: Journal of the Mechanics and Physics of Solids, 54 (8)Link zu Google Scholar
[Desarnaud.etal:2016]Desarnaud, J.; Bonn, D.; Shahidzadeh, N. (2016): The Pressure induced by salt crystallization in confinement. In: Scientific reports, 6 (), WebadresseLink zu Google Scholar
[Duttlinger.etal:1993]Duttlinger, Werner; Knöfel, Dietbert (1993): Salzkristallisation und Salzschadensmechanismen. In: Snethlage, Rolf (Hrsg.): Jahresberichte Steinzerfall - Steinkonservierung 1991, Ernst & Sohn, (Berlin), 197-213.Link zu Google Scholar
[Espinosa-Marzal.etal:2010]Espinosa-Marzal, Rosa M.; Scherer, George W. (2010): Advances in Understanding Damage by Salt Crystallization. In: Accounts of Chemical Research, 43 (6), 897-905, WebadresseLink zu Google Scholar
[Everett:1961]Everett, D.H. (1961): The thermodynamics of frost damage to porous solids. In: Transactions of the Faraday Society, 57 (), 1541-1551Link zu Google Scholar
[Flatt.etal:2007]Flatt, Robert J.; Steiger, Michael; Scherer, George W. (2007): A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure. In: Environmental Geology, 52 (2), 187-203, 10.1007/s00254-006-0509-5Link zu Google Scholar
[Flatt:2002]Flatt, Robert J. (2002): Salt damage in porous materials: how high supersaturations are generated. In: Journal of Crystal Growth, 242 (3), 435-454, WebadresseLink zu Google Scholar
[Goranson:1940]Goranson, R.W. (1940): Physics of stressed solids. In: J. Chem. Phys., 8 (4), WebadresseLink zu Google Scholar
[Hall.etal:1984]Hall, C.; Hoff, W.D.; Nixon, M.R. (1984): Water Movement in Porous Building Materials - VI. Evaporation and Drying in Brick and Block Materials. In: Build. Environ., 19 (1), 13-20, WebadresseLink zu Google Scholar
[Mortensen:1933]Mortensen, H. (1933): "Salzsprengung" und ihre Bedeutung für die regionalklimatische Gleiderung der Wüsten. In: Petermann's Mittelungen aus Justus Perthes geographischer Anstalt, (79), 130-135Link zu Google Scholar
[Scherer:1999]Scherer, George W. (1999): Crystallization in pores. In: Cement and Concrete Research, 29 (8), 1347-1358, WebadresseLink zu Google Scholar
[Scherer:2004]Scherer, George W. (2004): Stress from crystallization of salt. In: Cement and Concrete Research, 34 (4), 1613–1624, WebadresseLink zu Google Scholar
[Steiger.etal:2008]Steiger, Michael; Asmussen, Sönke (2008): Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4 -H2O and the generation of stress. In: Geochimica et Cosmochimica Acta, 72 (17), 4291-4306, Webadresse, https://doi.org/10.1016/j.gca.2008.05.053Link zu Google Scholar
[Steiger.etal:2014]Steiger, Michael; Charola A. Elena; Sterflinger, Katja (2014): Weathering and Deterioration. In: Siegesmund S.; Snethlage R. (Hrsg.): Stone in Architecture, Springer Verlag Berlin Heidelberg, 223-316, Webadresse, https://doi.org/10.1007/978-3-642-45155-3_4.Link zu Google Scholar
[Steiger:2003b]Steiger, Michael (2003): Salts and Crusts. In: Brimblecomb, Peter (Hrsg.): Air Pollution Reviews - Vol. 2: The effect of air pollution on the Built Environment, Imperial College Press, 133-181, Webadresse.Link zu Google Scholar
[Steiger:2005]Steiger, Michael (2005): Crystal growth in porous materials: I. The crystallization pressure of large crystals. In: Journal of Crystal Growth, 282 (3), 455-469, WebadresseLink zu Google Scholar
[Steiger:2005b]Steiger, M. (2005): Crystal growth in porous materials: II. The influence of crystal size. In: Journal of Crystal Growth, 282 (3), 470-481, WebadresseLink zu Google Scholar
[Steiger:2006]Steiger, Michael (2006): Crystal growth in porous materials: Influence of supersaturation and crystal size. In: Fort, Rafael; Alvarez de Buergo, Monica; Gomez-Heras, Miquel; Vazquez-Calvo, Carmen (Hrsg.): Heritage, Weathering and Conservation: Proceedings of the International Heritage, Weathering and Conservation Conference (HWC-2006), 21-24 June 2006, Madrid, Spain, Taylor & Francis, 245-251, Webadresse.Link zu Google Scholar
[Steiger:2009]Steiger, M. (2009): Mechanismus der Schädigung durch Salzkristallisation. In: Schwarz, Hans-Jürgen; Steiger, Michael (Hrsg.): Salzschäden an Kulturgütern: Stand des Wissens und Forschungsdefizite, Hannover, 66-80, Webadresse.Link zu Google Scholar
[Taber:1916]Taber, S. (1916): The Growth of Crystals under External Pressure. In: American Journal of Science, 41 (264), 532-556, WebadresseLink zu Google Scholar
[Weyl:1959]Weyl, P. K. (1959): Pressure Solution and the Force of Crystallisation - A Phenomenological Theory. In: Journal of Geophysical Research, 64 (11), 2001-2025, WebadresseLink zu Google Scholar