Schadensmechanismen: Unterschied zwischen den Versionen

Aus Salzwiki
Zur Navigation springen Zur Suche springen
Zeile 79: Zeile 79:


Es ergibt sich dann eine weitaus ausführlichere Gleichung für Δ<i>p</i>. Im Falle von Einzelsalzen lässt sie sich aber durch die Einführung eines mittleren Aktivitätskoeffizienten <i>γ</i><sup>±</sup>=(<i>γ</i><sub>M</sub><sup><i>ν</i><sub>M</sub></sup><i>γ</i><sub>X</sub><sup><i>ν</i><sub>X</sub></sup>)<sup>(1/<i>ν</i>)</sup> und mit der Annahme, dass <i>m</i><sub>i</sub>=<i>ν</i><sub>i</sub>∙<i>m</i>, vereinfachen. Damit ist die Aktivität <i>a</i>=(<i>ν</i><sub>M</sub><sup><i>ν</i><sub>M</sub></sup><i>ν</i><sub>X</sub><sup><i>ν</i><sub>X</sub></sup>)∙(<i>mγ</i><sub>±</sub>)<sup>ν</sup>∙<i>a</i><sub>w</sub><sup><i>ν</i><sub>0</sub></sup>, wobei <i>ν</i> die Anzahl der beim Auflösen gebildeten Ionen darstellt. Es ergibt sich der folgende Ausdruck:
Es ergibt sich dann eine weitaus ausführlichere Gleichung für Δ<i>p</i>. Im Falle von Einzelsalzen lässt sie sich aber durch die Einführung eines mittleren Aktivitätskoeffizienten <i>γ</i><sup>±</sup>=(<i>γ</i><sub>M</sub><sup><i>ν</i><sub>M</sub></sup><i>γ</i><sub>X</sub><sup><i>ν</i><sub>X</sub></sup>)<sup>(1/<i>ν</i>)</sup> und mit der Annahme, dass <i>m</i><sub>i</sub>=<i>ν</i><sub>i</sub>∙<i>m</i>, vereinfachen. Damit ist die Aktivität <i>a</i>=(<i>ν</i><sub>M</sub><sup><i>ν</i><sub>M</sub></sup><i>ν</i><sub>X</sub><sup><i>ν</i><sub>X</sub></sup>)∙(<i>mγ</i><sub>±</sub>)<sup>ν</sup>∙<i>a</i><sub>w</sub><sup><i>ν</i><sub>0</sub></sup>, wobei <i>ν</i> die Anzahl der beim Auflösen gebildeten Ionen darstellt. Es ergibt sich der folgende Ausdruck:
Δ<i>p</i>=<i>νRT</i>/<i>V<sub>m</sub></i>∙[ln(<i>m</i>/<i>m</i><sub>0</sub>)+ln(<i>γ</i><sub>±</sub>/<i>γ</i><sub>±,0</sub>)+(<i>ν</i><sub>0</sub>/<i>ν</i>)∙ln(<i>a</i><sub>w</sub>/<i>a</i><sub>w,0</sub>)] (Gl. 7)


== Übersicht über die Gliederung zum Thema Schadensmechanismen  ==
== Übersicht über die Gliederung zum Thema Schadensmechanismen  ==

Version vom 25. März 2019, 16:01 Uhr

Autoren: Michael Steiger, Hans-Jürgen Schwarz

zurück zu Salzwiki:Portal

Abstract[Bearbeiten]

Mechanismen, die für die Schädigung von porösen Baumaterialien durch Salzkristallisation verantwortlich sind, werden vorgestellt. Zudem berichtet ein kurzer historischer Rückblick über die in der Vergangenheit vorgestellten Mechanismen.

Einleitung[Bearbeiten]

Ein Großteil des kulturellen Erbes besteht aus porösen Materialien, wie beispielsweise Stein, Ziegel, Putz und Mörtel. Die Kristallisation von Salzen in den Poren der Materialien kann zu Schädigungen führen. Ob ein Salz aus der Porenlösung auskristallisiert, hängt von der umgebenden relativen Luftfeuchtigkeit und Temperatur ab. Bei sinkender relativer Luftfeuchtigkeit wird Wasser aus einer Salzlösung in Form von Wasserdampf an die Atmosphäre abgegeben. Bei der Deliqueszenzfeuchte des Salzes liegt zunächst eine gesättigte Lösung vor, unterhalb der Deliqueszenzfeuchte liegt nur noch das kristalline Salz vor. Steigt die relative Luftfeuchtigkeit wieder auf den Wert der Deliqueszenzfeuchte, wird Wasserdampf aus der Umgebung aufgenommen und eine gesättigte Lösung gebildet, die bei ansteigender Feuchte weiter verdünnt wird. Somit zeigt sich, dass bei schwankenden Umgebungsbedingungen um die Deliqueszenzfeuchte eines Salzes Zyklen von Kristallisation und Deliqueszenz auftreten können. Zu Schädigungen des porösen Wirts kann es durch den bei der Kristallisation möglicherweise wirksamen Kristallisationsdruck kommen, welcher im Falle von zyklischen Wechseln wiederholt wirksam werden kann. Einer der entscheidenden Faktoren für einen wirksamen Kristallisationsdruck ist das Vorliegen einer übersättigten Lösung. Bei einer übersättigten Lösung erfolgt die Kristallisation des Salzes nicht beim Erreichen der Sättigungskonzentration oder -temperatur, bei denen eine gesättigte Lösung gebildet werden sollte, sondern erst bei niedrigeren Feuchtegehalten oder Temperaturen. Übersättigte Lösungen können im Zuge der Verdunstung von Wasserdampf aus einer Lösung entstehen, also beispielsweise beim Absinken der relativen Luftfeuchtigkeit, oder nach Flüssigwassereintrag, aber auch durch Temperaturänderungen, wie dem Abkühlen von Lösungen. Auch beim Lösen einer metastabilen Phase kann eine in Bezug auf die jeweils stabile Phase übersättigte Lösung entstehen, was weiter unten näher erläutert wird. Auffällig ist, dass die Prozesse, die zu einer Schädigung poröser Materialien durch Salzkristallisation führen, stark von den Umgebungsbedingungen sowie der Anwesen- oder Abwesenheit von Wasser abhängen. Die vorgestellten Schadensmechanismen, bei denen es sich um Modellvorstellungen handelt, gelten nur für die Betrachtung von anorganischen, porösen Materialien.

Kristallisation aus einer Porenlösung[Bearbeiten]

Wird eine salzhaltige Porenlösung betrachtet, so hängt die Konzentration von den Faktoren der umgebenden relativen Luftfeuchtigkeit und Temperatur ab. Die Konzentration steigt, wenn Wasser in Form von Wasserdampf an die Umgebung abgegeben wird, also bei sinkender relativer Luftfeuchtigkeit. Verdunstet so viel Wasser, dass die Löslichkeit des betrachteten Salzes unterschritten wird, kommt es zur Kristallisation. Die relative Luftfeuchtigkeit, bei der die Sättigungskonzentration des Salzes erreicht wird, ist die Deliqueszenzfeuchte. Bei der fortschreitenden Trocknung einer Porenlösung befindet sich der Verdunstungshorizont zunächst an der Materialoberfläche. Durch Kapillarkräfte wird Wasser schneller an die Oberfläche transportiert als es durch die Verdunstung abtransportiert wird. Mit fortscheitender Trocknung verlagert sich der Verdunstungshorizont ins Innere des porösen Materials, da der Feuchtegehalt sinkt und der Kapillartransport zur Oberfläche nicht ausreichend schnell erfolgen kann. Die Salze aus der Porenlösung können nun sowohl auf der Oberfläche in Form von Effloreszenzen als auch in oberflächennahen Bereichen als Subfloreszenz auskristallisieren. Wo die Kristallisation erfolgt, ist abhängig von den Trocknungsbedingungen, der Lösungszusammensetzung, der Lösungskonzentration und den Materialeigenschaften.

Historischer Überblick[Bearbeiten]

Dem heutigen Wissensstand über die Modelle zur Schädigung poröser Materialien durch Kristallisationsdruck gingen ab dem 20. Jahrhundert teilweise kontroverse Diskussionen voran. Das gerichtete Wachstum eines Kristalls gegen ein Hindernis und dessen Anhebung wurden als linearer Wachstumsdruck verstanden (u.a. [Becker.etal:1916]Titel: Notes on the Linear Force of Growing Crystals
Autor / Verfasser: Becker, G.F.; Day, A.L.
Link zu Google Scholar
, [Taber:1916]Titel: The Growth of Crystals under External Pressure
Autor / Verfasser: Taber, S.
Link zu Google Scholar
, [Correns.etal:1939]Titel: Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft
Autor / Verfasser: Correns, Carl W.; Steinborn, W.
Link zu Google Scholar
). Es sei der Druck, den ein wachsender Kristall maximal ausüben kann, wenn er aus einer übersättigten Lösung in Richtung der sich ausbildenden Kristallflächen wächst. Ein Lösungsfilm müsse zudem zwischen Kristall und Hindernis vorliegen, um einen ausreichend schnellen Stofftransport zu gewährleisten [Taber:1916]Titel: The Growth of Crystals under External Pressure
Autor / Verfasser: Taber, S.
Link zu Google Scholar
. Wichtige Beiträge zu diesem Thema kamen von [Correns:1926]Titel: Über die Erklärung der sogenannten Kristallisationskraft
Autor / Verfasser: Correns, Carl W.
Link zu Google Scholar
, der die Kristallisationskraft in Volumenvergrößerung (hydrostatischer Kristallisationsdruck), Hydratationsdruck und jene zuvor als linearer Wachstumsdruck beschriebene Kräfte unterteilte. Zudem wies er, wie schon andere vor ihm ([Taber:1916]Titel: The Growth of Crystals under External Pressure
Autor / Verfasser: Taber, S.
Link zu Google Scholar
), auf den Einfluss der Grenzflächenenergie hin, die einen gewissen Wert aufweisen müsse, damit Wachstum stattfindet. Er verwies darauf, dass wachsende Kristalle nicht fest an ihrem Untergrund sitzen, sondern auf einem Lösungsfilm aufliegen, durch den auch der Ionennachschub gewährleistet wird, und dessen Ausbildung ebenfalls auf die Grenzflächenenergie von Kristall und Porenwand zurückzuführen ist ([Correns:1926]Titel: Über die Erklärung der sogenannten Kristallisationskraft
Autor / Verfasser: Correns, Carl W.
Link zu Google Scholar
, [Bruhns.etal:1913]Titel: Über die sogenannte "Kristallisationskraft"
Autor / Verfasser: Bruhns, W.; Mecklenburg, W.
Link zu Google Scholar
, [Weyl:1959]Titel: Pressure Solution and the Force of Crystallisation - A Phenomenological Theory
Autor / Verfasser: Weyl, P. K.
Link zu Google Scholar
. Da in einigen Versuchen, in denen ein belasteter und ein unbelasteter Alaun-Kristall mit einer gesättigten Lösung in Kontakt standen, nur der unbelastete wuchs, wurde der lineare Wachstumsdruck aber auch in Frage gestellt und ein Druck beziehungsweise ein Anheben eines Hindernisses eher auf eine Volumenzunahme als auf einen Druck durch den Kristall zurückgeführt. Darunter fiel auch der Hydratationsdruck, also das im Vergleich zur wasserfreien oder geringer hydratisierten Phase erhöhte Volumen der höher hydratisierten Phase ([Bruhns.etal:1913]Titel: Über die sogenannte "Kristallisationskraft"
Autor / Verfasser: Bruhns, W.; Mecklenburg, W.
Link zu Google Scholar
). Der hydrostatische Druck wird als Folge der Volumenzunahme bei der Kristallisation von Salzen definiert, bei denen das Volumen von Salz und gesättigter Lösung größer ist als das der übersättigten Lösung. In Bezug auf den Hydratationsdruck kamen wichtige Beiträge von [Mortensen:1933]Titel: "Salzsprengung" und ihre Bedeutung für die regionalklimatische Gleiderung der Wüsten
Autor / Verfasser: Mortensen, H.
Link zu Google Scholar
, der die bei der Hydratation eines wasserfreien Kristalls verrichtete Arbeit (Druck gegen einen Stempel) untersuchte. Er leitete eine Formel für den Hydratationsdruck ab:

Δphydr=(ΔnRTVm)∙ln(RH/RHeq) (Gl.1)

Es sind Δn die Differenz der Wassermoleküle pro Mol Salz des niedrigeren Hydrats mit n1 und des höheren mit n2, ΔVm die Differenz zwischen den molaren Volumina der beiden Phasen, RH die relative Feuchte, bei der die Hydratationsreaktion abläuft und RHeq die Gleichgewichtsfeuchte bei der Temperatur T des Hydratations-Dehydratationsgleichgewichts. Der Hydratationsdruck ist der Druck, den ein wachsender Kristall der höher hydratisierten Phase maximal auf die Porenwand ausüben kann, da bei einem noch höheren Druck seine Dehydratisierung erfolgen würde [Mortensen:1933]Titel: "Salzsprengung" und ihre Bedeutung für die regionalklimatische Gleiderung der Wüsten
Autor / Verfasser: Mortensen, H.
Link zu Google Scholar
, [Steiger.etal:2014]Titel: Weathering and Deterioration
Autor / Verfasser: Steiger, Michael; Charola A. Elena; Sterflinger, Katja
Link zu Google Scholar
.

Eingehend haben sich auch Correns und Steinborn ([Correns.etal:1939]Titel: Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft
Autor / Verfasser: Correns, Carl W.; Steinborn, W.
Link zu Google Scholar
) mit der „Kristallisationskraft“ beschäftigt. Für den „linearen Wachstumsdruck“ leiteten sie eine Formel über die chemischen Potentiale ab, bei der die Größe des Drucks vom Grad der Übersättigung abhängig ist. Den maximalen Kristallisationsdruck geben sie durch die folgende Gleichung an:

p=(RT/Vm)∙lnS=(RT/Vm)∙ln(c/c0) (Gl. 2)

Darin sind ∆p der Kristallisationsdruck, R die ideale Gaskonstante, T die Temperatur, Vm das molare Volumen des Salzes, S die Übersättigung, c die Konzentration der übersättigten Lösung und c0 die Konzentration der gesättigten Lösung. Da sie in Experimenten an verschiedenen Kristallflächen stets geringere Werte als die theoretischen erhielten, verwiesen sie auf die unterschiedlichen Grenzflächenenergien unterschiedlicher Flächen.

In vielen der darauffolgenden Gleichungen wurde der Kristallisationsdruck auch in Abhängigkeit der Übersättigung angegeben, wobei jedoch unterschiedliche Ausdrücke für die Übersättigung verwendet wurden (z.B. [Goranson:1940]Titel: Physics of stressed solids
Autor / Verfasser: Goranson, R.W.
Link zu Google Scholar
, [Buil:1983]Titel: Thermodynamics and Experimental Study of the Crystallization Pressure of Water Soluble Salts
Autor / Verfasser: Buil, Michel
Link zu Google Scholar
).

Everett ([Everett:1961]Titel: The thermodynamics of frost damage to porous solids
Autor / Verfasser: Everett, D.H.
Link zu Google Scholar
betrachtete die Kristallisation von Eiskristallen und schlug eine Theorie vor, bei der der Kristallisationsdruck eine Folge von Stabilitätsunterschieden verschieden großer Kristalle ist. Die Stabilitätsunterschiede ergeben sich bei ihm durch die unterschiedlichen Krümmungen der Grenzfläche zwischen fester und flüssiger Phase, welche zu verschiedenen chemischen Potentialen für Kristalle verschiedener Größen führen. Die Übersättigung betrachtete er zunächst nicht. Seine Gleichung

p=γcl∙(dA/dV) (Gl. 3)

beschreibt somit die Druckdifferenz zwischen zwei Kristallen verschiedener Größen. γcl ist die Grenzflächenenergie zwischen der festen und der flüssigen Phase, A die Fläche und V das Volumen. Bei sphärischen Kristallen ergibt sich

p=2γcl∙[(1/r1)-(1/r2)] (Gl. 4).

Es wird der Druck beschrieben, der durch Kristallwachstum in der größeren Pore mit dem Radius r2 wirkt, da das Wachstum in der kleineren Pore thermodynamisch nicht begünstigt ist. Der Kristall in der größeren Pore wächst solange, bis das chemische Potential dem des Kristalls in der kleineren Pore mit r1 entspricht ([Everett:1961]Titel: The thermodynamics of frost damage to porous solids
Autor / Verfasser: Everett, D.H.
Link zu Google Scholar
, [Steiger:2005a]Der Eintrag existiert noch nicht.).

Die beiden Ansätze von Correns und von Everett wurden lange Zeit als zwei widersprüchliche Schadensmechanismen betrachtet, da der eine die Übersättigung und der andere die Krümmung als verantwortlich für den Kristallisationsdruck beschreibt. Parallel wurden beide Ansätze verfolgt, wobei der von Correns teilweise durch zu hohe angenommene Übersättigung kritisiert wurde. Auf Everetts‘ Ansatz wurde zurückgegriffen, da für die Porengrößen zuverlässigere Werte zugänglich waren als für die Übersättigung [Steiger:2005a]Der Eintrag existiert noch nicht..

Der Kristallisationsdruck[Bearbeiten]

Eine Schädigung von porösem Material durch Salzkristallisation kann nur auftreten, wenn es sich um einen eingeschlossenen Kristall handelt, der aus einer übersättigten Lösung gegen ein Hindernis wächst (z.B. [Correns.etal:1939]Titel: Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft
Autor / Verfasser: Correns, Carl W.; Steinborn, W.
Link zu Google Scholar
). Dieses Hindernis wird im Falle von porösen Materialien durch die Porenwände dargestellt. Da der Kristall gegen diesen Druck weiterwächst, wird eine mechanische Belastung in Form einer Zugspannung auf das Material ausgeübt. Eine weitere Bedingung für das Kristallwachstum gegen die Porenwand ist das Vorhandensein eines dünnen Lösungsfilms [Weyl:1959]Titel: Pressure Solution and the Force of Crystallisation - A Phenomenological Theory
Autor / Verfasser: Weyl, P. K.
Link zu Google Scholar
(etwa 1 nm Dicke [Scherer:1999]Titel: Crystallization in pores
Autor / Verfasser: Scherer, George W.
Link zu Google Scholar
) zwischen dem wachsenden Kristall und der Porenwand, durch welchen der Ionentransport erfolgt. Grund für das Vorliegen des Films sind Abstoßungskräfte zwischen Kristall und Porenwand. Ohne das Vorliegen dieses Films würde ein Wachstum gegen die Porenwände aufgrund der Abstoßung nicht erfolgen können. In Versuchen, bei denen die Kraft, die ein zwischen zwei Glasplatten eingeengter Kristall ausübt, betrachtet wurde, konnte das Vorliegen des Films visuell belegt und seine Relevanz gezeigt werden [Desarnaud.etal:2016]Titel: The Pressure induced by salt crystallization in confinement
Autor / Verfasser: Desarnaud, J.; Bonn, D.; Shahidzadeh, N.
Link zu Google Scholar
. Der Abstoßungsdruck zwischen den beiden Komponenten stellt den maximalen Kristallisationsdruck dar, da es bei seiner Überschreitung zum direkten Kontakt zwischen Kristall und Wand kommt, wodurch das Kristallwachstum stoppt. Da der Abstoßungsdruck auch geringfügig von der Benetzbarkeit und Eigenschaften bezüglich der Oberflächenladung abhängig ist, können sich für die Kristallisation verschiedener Salze in variierenden Materialen Unterschiede ergeben [Desarnaud.etal:2016]Titel: The Pressure induced by salt crystallization in confinement
Autor / Verfasser: Desarnaud, J.; Bonn, D.; Shahidzadeh, N.
Link zu Google Scholar
.

Ein in einer Pore wachsender Kristall ist einem anisotropen Druck ausgesetzt. An seinen freien Flächen, die nicht gegen die Porenwand wachsen sondern mit der Porenlösung in Kontakt stehen, wirkt der hydrostatische Druck der Lösung. Hingegen wirkt an den belasteten Flächen des wachsenden Kristalls, die zur Porenwand gerichtet sind, ein erhöhter Druck. Die Differenz dieser Drücke ist der Kristallisationsdruck. Da die Löslichkeit von Kristallen eine Druckabhängigkeit aufweist und diese mit zunehmendem Druck ansteigt, weisen die freien und die belasteten Flächen des Kristalls unterschiedliche Löslichkeiten auf. Beispielsweise bedeutet das, dass eine in Bezug auf die belastete Fläche gesättigte Lösung in Bezug auf die freie Fläche bereits übersättigt ist. Die Gleichung für den Kristallisationsdruck kann wie folgt angegeben werden:

p=(RT/Vm)∙ln(a/a0) (Gl. 5).

Dabei ist ∆p der Kristallisationsdruck oder auch die Differenz zwischen dem Druck, der an der belasteten Kristallfläche unter dem Druck pc wirkt und dem hydrostatischen Druck pl, dem die freien Flächen ausgesetzt sind; a die Aktivität der übersättigten Lösung und a0 die Aktivität der gesättigten Lösung. Durch die Verwendung von Aktivitäten wird das nicht-ideale Verhalten von Salzlösungen berücksichtigt.[Steiger:2005b]Titel: Crystal growth in porous materials: II. The influence of crystal size
Autor / Verfasser: Steiger, M.
Link zu Google Scholar

Diese Gleichung weist zunächst eine große Ähnlichkeit zu der von Correns und Steinborn angegebenen Gleichung ([Correns.etal:1939]Titel: Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft
Autor / Verfasser: Correns, Carl W.; Steinborn, W.
Link zu Google Scholar
) auf, jedoch wird im Gegensatz zu ihrer Gleichung das nicht-ideale Verhalten von Salzlösungen durch die Verwendung von Aktivitäten anstelle von Konzentrationen berücksichtigt. Zudem vernachlässigte Correns das Vorhandensein eines anisotropen Drucks, dem der Kristall ausgesetzt ist.

Ein Druck wird nur dann auf das Porengefüge ausgeübt, wenn der Kristall mit einer in Bezug auf die freie Fläche übersättigten Lösung in Kontakt steht. Da die Übersättigung aber durch das Kristallwachstum an der freien Fläche abgebaut wird (sofern freie Flächen zur Verfügung stehen), sinkt die Übersättigung und der Druck an der belasteten Fläche kann nicht stetig aufrechterhalten werden. Da die ausgehende Lösung in Bezug auf die belastete Fläche gesättigt war, wird sie durch die dann abnehmende Lösungskonzentration in Bezug auf diesen Bereich untersättigt. In diesem Zuge löst sich der Kristall an der belasteten Fläche also auf und bewirkt damit einen abnehmenden Druck, damit das Gleichgewicht mit dem Lösungsfilm wiederhergestellt wird. Diese beiden Einflüsse führen dazu, dass hohe Kristallisationsdrücke nur kurzzeitig beim Vorliegen hoher Übersättigungen wirken können. Somit handelt es sich bei dem Druckaufbau durch Salzkristallisation nicht um einen Gleichgewichtszustand. Es ist unter den angegebenen Bedingungen ein kinetischer, dynamischer Prozess, der Einflüssen wie Diffusions- und Wachstumsrate und verfügbaren freien Kristallflächen unterliegt ([Steiger:2009]Titel: Mechanismus der Schädigung durch Salzkristallisation
Autor / Verfasser: Steiger, M.
Link zu Google Scholar
, [Scherer:2004]Titel: Stress from crystallization of salt
Autor / Verfasser: Scherer, George W.
Link zu Google Scholar
.

Vertiefung[Bearbeiten]

Wird ein Salz gelöst, so folgt die Lösungsreaktion der folgenden Gleichung:

MνMXνXν0H2O⇌νMMzM++νXXzX-+ν0 H2O (Gl. 6)

Es sind M die Kationen, X die Anionen, ν die Anzahl der entsprechenden Ionen M und X, z die Ladung des entsprechenden Ions und ν0 die Anzahl der Wassermoleküle.

Die Aktivität des gelösten Salzes ist a=aMνMaXνXawν0, das Ionenaktivitätsprodukt. Hierbei ist aw die Wasseraktivität.

Wird die Aktivität in Form der Aktivitätskoeffizienten und Molalitäten ausgedrückt ai=γi∙(mi/m0), wo ai die Aktivität des Ions, γi der Aktivitätskoeffizient des Ions, mi die Molalität des Ions in der Lösung und m0=1 mol/kg sind, so kann der Kristallisationsdruck eines Kristalls in Kontakt mit jeder beliebigen Lösung berechnet werden, sofern die Aktivitätskoeffizienten und Wasseraktivitäten bekannt sind.

Es ergibt sich dann eine weitaus ausführlichere Gleichung für Δp. Im Falle von Einzelsalzen lässt sie sich aber durch die Einführung eines mittleren Aktivitätskoeffizienten γ±=(γMνMγXνX)(1/ν) und mit der Annahme, dass mi=νim, vereinfachen. Damit ist die Aktivität a=(νMνMνXνX)∙(±)νawν0, wobei ν die Anzahl der beim Auflösen gebildeten Ionen darstellt. Es ergibt sich der folgende Ausdruck:

Δp=νRT/Vm∙[ln(m/m0)+ln(γ±/γ±,0)+(ν0/ν)∙ln(aw/aw,0)] (Gl. 7)

Übersicht über die Gliederung zum Thema Schadensmechanismen[Bearbeiten]

In der älteren Literatur (z.B [Correns:1926]Titel: Über die Erklärung der sogenannten Kristallisationskraft
Autor / Verfasser: Correns, Carl W.
Link zu Google Scholar
, [Winkler:1975]Titel: Stone: Properties, Durability in Man ´s Environment
Autor / Verfasser: Winkler, Erhard M.
Link zu Google Scholar
, [Duttlinger.etal:1993]Titel: Salzkristallisation und Salzschadensmechanismen
Autor / Verfasser: Duttlinger, Werner; Knöfel, Dietbert
Link zu Google Scholar
) werden immer wieder folgende Arten von Schadensmechanismen, die mit Salzen in direktem Zusammenhang stehen oder aber durch Salze verstärkt werden, genannt, auf die im Folgenden kurz eingegangen werden soll:


Linearer Wachstumsdruck[Bearbeiten]

Der lineare Wachstumsdruck ist derjenige Druck, bis zu dessen Höhe ein Kristall gegen eine Belastung noch wachsen kann oder umgekehrt formuliert, der maximale Druck, den ein wachsender Kristall ausüben kann.

Der lineare Wachstumsdruck ist insbesondere abhängig vom Grad der Übersättigung der Salzlösung. Die in der Literatur vorhandenen Berechnungen gehen auf Correns und Steinborn zurück [Correns.etal:1939]Titel: Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft
Autor / Verfasser: Correns, Carl W.; Steinborn, W.
Link zu Google Scholar
.


Porenabhängiger Kristallisationsdruck[Bearbeiten]

Kristalle in den großen Poren wachsen auf Kosten derjenigen in den kleinen Poren. Die Kristalle in den großen Poren mit dem niedrigeren Chemischen Potential wachsen zunächst bis der Porenraum gefüllt ist und dann solange weiter, bis ihr chemisches Potential durch Druckerhöhung in der großen Pore auf das Niveau in der kleinen Pore gehoben ist. Demzufolge ist bei einer Porenverteilung mit zwei deutlich unterschiedlichen Maxima eher mit Schäden durch Kristallisation von Salzen zu rechnen [Snethlage:1984]Titel: Steinkonservierung, Forschungsprogramm des Zentrallabors für Denkmalpflege 1979-1983, Bericht für die Stiftung Volkswagenwerk. Arbeitshefte des Bayerischen Landesamtes für Denkmalpflege
Autor / Verfasser: Snethlage, Rolf
Link zu Google Scholar
.

Hydrostatischer Kristallisationsdruck[Bearbeiten]

Bei bestimmten Salzen [Correns.etal:1939]Titel: Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft
Autor / Verfasser: Correns, Carl W.; Steinborn, W.
Link zu Google Scholar
ist das Volumen von 'Salz + Lösung' größer als das der gesättigten Lösung. Kristallisiert dieses Salz dann in der Pore aus und verschließen die ausscheidenden Kristalle die Porenausgänge, so kann es bei der weiteren Salzkristallisation zu einem allseitigen hydrostatischen Druck auf die Porenwandungen kommen.


Hydratationsdruck[Bearbeiten]

Zahlreiche bauschädliche Salze liegen abhängig von Temperatur und relativer Luftfeuchte in verschiedenen Hydratstufen vor, d.h. es existieren von ihnen Salzphasen mit zum Teil deutlich unterschiedlichem Wassergehalt. Die Bildung der neuen Phase ist sowohl nach kompletter Auflösung des alten Kristalls, als auch durch Umbau des Kristalls im festen Zustand vorstellbar. Der Einbau von Wasser in das Kristallgitter ist mit einer Volumenzunahme verbunden und übt somit einen Druck auf eine Begrenzung aus.

Chemomechanische Effekte[Bearbeiten]

Die Eigenschaften eines Stoffes sind nicht nur von seiner Zusammensetzung abhängig, sondern auch von seinen Umgebungsbedingungen. Temperatur, Druck und auch Stoffe mit denen er in Kontakt steht und kommt, beeinflussen seine Eigenschaften. Durch Salzlösungen können infolge der Veränderungen der elektrischen Eigenschaften diese ein signifikant anderes Verhalten zeigen als bei Abwesenheit von Salzen. Insbesondere das Zeta-Potential, also das die elektrische Doppelschicht kennzeichnende elektrische Potential, spielt in diesem Zusammenhang eine Rolle. Für viele Materialien besteht eine enge Wechselbeziehung zwischen Zeta-Potential und verschiedenen mechanischen Eigenschaften derart, dass z.B. Härte, Bruchzähigkeit oder Festigkeit maximal werden, wenn das Zeta-Potential verschwindet. Über diesen Mechanismus können Salze das Verhalten von Materialien beeinflussen. Dabei können in der Doppelschicht bei Nichtmetallen so hohe Feldstärken entstehen, dass die Beweglichkeit von Strukturfehlern (Versetzungen, Risse) beeinflusst wird. Dadurch werden auch die technischen Eigenschaften verändert, ohne dass spezifische Reaktionen mitwirken müssen.


Dynamisch synergetische Effekte[Bearbeiten]

Beim Austrocknen von Salzlösungen bleiben i.a. poröse Filme zurück, die Wasser oder Lösung transportieren können. Diese porösen Strukturen sind infolge ihrer hohen spezifischen Oberfläche extrem hygroskopisch und schon Änderungen der Luftfeuchtigkeit, in jedem Fall aber direkte Wasserzufuhr, ändern auf der Oberfläche der Porenwandung aufsitzende Salzstrukturen in Größe und Form. Diese Deformationen führen zu Schubspannungen an der Substratoberfläche, die zeitlich veränderlich sind. Salzinduzierte Schäden sind nach dieser Vorstellung [Puehringer:1983]Titel: Salt Disintegration
Autor / Verfasser: Pühringer, Josef
Link zu Google Scholar
das Resultat von vielen aufeinander folgenden Belastungszyklen mit verhältnismäßig kleiner Intensität.


Hygrische Effekte[Bearbeiten]

Viele poröse Baustoffe erfahren in Abhängigkeit vom Feuchtegehalt ein Dehnen und Schwinden, die wenn sie in steigem Wechsel auftreten, zu starken Schäden führen können. In welchem Ausmaß diese Prozesse erfolgen, hängt von der Zusammensetzung, der Porenstruktur und dem Feuchteangebot ab. Sind diese Stoffe zusätzlich mit hygroskopischen Salzen belastet, so stellt sich eine neue, im Vergleich zum salzfreien Stoff, höhere Gleichgewichtsfeuchte ein, die von der Salzart und -konzentration abhängt (siehe auch [Vogt.etal:1993]Titel: Der Einfluss hygroskopischer Salze auf die Gleichgewichtsfeuchte und Trocknung anorganischer Baustoffe
Autor / Verfasser: Vogt, R.; Goretzki, Lothar
Link zu Google Scholar
).

Thermische Effekte[Bearbeiten]

Da feuchte Baustoffe deutlich bessere Wärmeleiter sind als trockene Baustoffe, kann eine erhöhte Materialfeuchte zu einer Veränderung der Temperaturunterschiede in einem Baustoff und damit zu einer Veränderung des thermischen Dehnens und Schwindes führen. Da ein Temperaturausgleich schneller erfolgt, werden die thermischen Spannungen in der Regel abnehmen.

Neue Erkenntnisse zu den Schadensprozessen[Bearbeiten]

In den letzten Jahren wurde durch intensive Forschungsrarbeiten diese bisherigen Modelle der Schadensmechanismen durch Salze überprüft und mussten z.T. modifiziert werden.

Literatur[Bearbeiten]

[Becker.etal:1916]Becker, G.F.; Day, A.L. (1916): Notes on the Linear Force of Growing Crystals. In: Journal of Geology, 24 (4), 313-333, WebadresseLink zu Google Scholar
[Bruhns.etal:1913]Bruhns, W.; Mecklenburg, W. (1913): Über die sogenannte "Kristallisationskraft". In: Sechster Jahresbericht des Niedersächsischen Geologischen Vereins zu Hannover, (), 92-115Link zu Google Scholar
[Buil:1983]Buil, Michel (1983): Thermodynamics and Experimental Study of the Crystallization Pressure of Water Soluble Salts. In: F.H. Wittmann (Hrsg.): Materials Science and Restoration, Lack und Chemie, Filderstadt, 373-377.Link zu Google Scholar
[Correns.etal:1939]Correns, Carl W.; Steinborn, W. (1939): Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft. In: Zeitschrift für Kristallografie, (101), 117-133Link zu Google Scholar
[Correns:1926]Correns, Carl W. (1926): Über die Erklärung der sogenannten Kristallisationskraft. In:: Preuss. Akad. der Wissensch, Sitzungsband, de Gruyter, 81-88.Link zu Google Scholar
[Coussy:2006]Coussy, O. (2006): Deformation and stress from in-pore drying-induced crystallization of salt. In: Journal of the Mechanics and Physics of Solids, 54 (8)Link zu Google Scholar
[Desarnaud.etal:2016]Desarnaud, J.; Bonn, D.; Shahidzadeh, N. (2016): The Pressure induced by salt crystallization in confinement. In: Scientific reports, 6 (), WebadresseLink zu Google Scholar
[Duttlinger.etal:1993]Duttlinger, Werner; Knöfel, Dietbert (1993): Salzkristallisation und Salzschadensmechanismen. In: Snethlage, Rolf (Hrsg.): Jahresberichte Steinzerfall - Steinkonservierung 1991, Ernst & Sohn, (Berlin), 197-213.Link zu Google Scholar
[Espinosa-Marzal.etal:2010]Espinosa-Marzal, Rosa M.; Scherer, George W. (2010): Advances in Understanding Damage by Salt Crystallization. In: Accounts of Chemical Research, 43 (6), 897-905, WebadresseLink zu Google Scholar
[Everett:1961]Everett, D.H. (1961): The thermodynamics of frost damage to porous solids. In: Transactions of the Faraday Society, 57 (), 1541-1551Link zu Google Scholar
[Flatt.etal:2007]Flatt, Robert J.; Steiger, Michael; Scherer, George W. (2007): A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure. In: Environmental Geology, 52 (2), 187-203, 10.1007/s00254-006-0509-5Link zu Google Scholar
[Flatt:2002]Flatt, Robert J. (2002): Salt damage in porous materials: how high supersaturations are generated. In: Journal of Crystal Growth, 242 (3), 435-454, WebadresseLink zu Google Scholar
[Goranson:1940]Goranson, R.W. (1940): Physics of stressed solids. In: J. Chem. Phys., 8 (4), WebadresseLink zu Google Scholar
[Hall.etal:1984]Hall, C.; Hoff, W.D.; Nixon, M.R. (1984): Water Movement in Porous Building Materials - VI. Evaporation and Drying in Brick and Block Materials. In: Build. Environ., 19 (1), 13-20, WebadresseLink zu Google Scholar
[Mortensen:1933]Mortensen, H. (1933): "Salzsprengung" und ihre Bedeutung für die regionalklimatische Gleiderung der Wüsten. In: Petermann's Mittelungen aus Justus Perthes geographischer Anstalt, (79), 130-135Link zu Google Scholar
[Scherer:1999]Scherer, George W. (1999): Crystallization in pores. In: Cement and Concrete Research, 29 (8), 1347-1358, WebadresseLink zu Google Scholar
[Scherer:2004]Scherer, George W. (2004): Stress from crystallization of salt. In: Cement and Concrete Research, 34 (4), 1613–1624, WebadresseLink zu Google Scholar
[Steiger.etal:2008]Steiger, Michael; Asmussen, Sönke (2008): Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4 -H2O and the generation of stress. In: Geochimica et Cosmochimica Acta, 72 (17), 4291-4306, Webadresse, https://doi.org/10.1016/j.gca.2008.05.053Link zu Google Scholar
[Steiger.etal:2014]Steiger, Michael; Charola A. Elena; Sterflinger, Katja (2014): Weathering and Deterioration. In: Siegesmund S.; Snethlage R. (Hrsg.): Stone in Architecture, Springer Verlag Berlin Heidelberg, 223-316, Webadresse, https://doi.org/10.1007/978-3-642-45155-3_4.Link zu Google Scholar
[Steiger:2003b]Steiger, Michael (2003): Salts and Crusts. In: Brimblecomb, Peter (Hrsg.): Air Pollution Reviews - Vol. 2: The effect of air pollution on the Built Environment, Imperial College Press, 133-181, Webadresse.Link zu Google Scholar
[Steiger:2005]Steiger, Michael (2005): Crystal growth in porous materials: I. The crystallization pressure of large crystals. In: Journal of Crystal Growth, 282 (3), 455-469, WebadresseLink zu Google Scholar
[Steiger:2005b]Steiger, M. (2005): Crystal growth in porous materials: II. The influence of crystal size. In: Journal of Crystal Growth, 282 (3), 470-481, WebadresseLink zu Google Scholar
[Steiger:2006]Steiger, Michael (2006): Crystal growth in porous materials: Influence of supersaturation and crystal size. In: Fort, Rafael; Alvarez de Buergo, Monica; Gomez-Heras, Miquel; Vazquez-Calvo, Carmen (Hrsg.): Heritage, Weathering and Conservation: Proceedings of the International Heritage, Weathering and Conservation Conference (HWC-2006), 21-24 June 2006, Madrid, Spain, Taylor & Francis, 245-251, Webadresse.Link zu Google Scholar
[Steiger:2009]Steiger, M. (2009): Mechanismus der Schädigung durch Salzkristallisation. In: Schwarz, Hans-Jürgen; Steiger, Michael (Hrsg.): Salzschäden an Kulturgütern: Stand des Wissens und Forschungsdefizite, Hannover, 66-80, Webadresse.Link zu Google Scholar
[Taber:1916]Taber, S. (1916): The Growth of Crystals under External Pressure. In: American Journal of Science, 41 (264), 532-556, WebadresseLink zu Google Scholar
[Weyl:1959]Weyl, P. K. (1959): Pressure Solution and the Force of Crystallisation - A Phenomenological Theory. In: Journal of Geophysical Research, 64 (11), 2001-2025, WebadresseLink zu Google Scholar