Alkalische Sulfitreduktion

Aus Salzwiki
Version vom 21. Januar 2012, 09:08 Uhr von SKaufhold (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „Alkalische Sulfitreduktion ==Einleitung== Die alkalische Sulfitreduktion wird für die Entsalzung von chloridbelasteten archäologischen Eisenfunden angewendet. …“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Alkalische Sulfitreduktion

Einleitung[Bearbeiten]

Die alkalische Sulfitreduktion wird für die Entsalzung von chloridbelasteten archäologischen Eisenfunden angewendet. Sie gehört zu den chemischen Waschverfahren und sie auch unter dem Namen Natriumsulfitmethode bekannt.

Durchführung[Bearbeiten]

Bei der Anwendung der alkalischen Sulfitreduktion werden die zu entsalzenden Eisenobjekte in eine stark alkalische Badlösung aus einem Gemisch aus Natriumhydroxid (NaOH) und Natriumsulfit (Na2SO3) in entionisiertem Wasser gegeben.

Untersuchungen von SCHMIDT-OTT und OSWALD zeigen, dass im Vergleich zur einst angewendeten Badkonzentration von 0,5M NaOH und 0,5M Na2SO3, die auf NORTH und PEARSON zurückgeht, mit einer verdünnten Badkonzentration von 0,1M NaOH (4g/l) und 0,05M Na2SO3 (6,3g/l) ein ebenso gutes Entsalzungsergebnis erzielt wird.[1]

Für das Bad eignet sich eine dicht schließende Edelstahlwanne. In der Regel liegt das Verhältnis des Gewichtes der Badlösung zum Gewicht des zu entsalzenden Eisens bei 5:1. Es empfiehlt sich eine Erwärmung des Bades auf etwa 50°C.

Eine Erhöhung der Temperatur hat zwei Vorteile. Zum einem nimmt der gelöste Sauerstoff in der Lösung ab[2] und zum anderen kommt es zur Erhöhung des Diffusionskoeffizienten der Chlorid-Ionen. Ebenso sollte eine leichte Umwälzung des Bades erfolgen. Um den Sauerstoff über der Badlösung zu entfernen kann kurz vor dem Verschließen des Behälters Stickstoff oder Argon eingeleitet werden.

Eisenobjekte, die organische Auflagerungen oder Nichteisenmetalle aufweisen sind von der Behandlung auszuschließen, da die stark alkalische Lösung diese angreifen kann.

Die Behandlungsdauer richtet sich nach dem gemessenen Chloridgehalt, der in regelmäßigen Abständen bestimmt wird. Die Chloridbestimmung kann mit einem titrimetrischem Chlorid-Test erfolgen. Die Badlösung muss von Zeit zu Zeit gewechselt werden. Die Badwechsel sind erforderlich, weil sie die Diffusion der Chlorid-Ionen erhöhen. Ohne einen Badwechsel würde sich eine gleiche Konzentration von Chlorid-Ionen im Objekt und in der Lösung einstellen und eine Diffusion kann nicht mehr stattfinden.

Der Grenzwert für den Abschluss der Behandlung liegt in der Regel bei einem Chlorid-Ionengehalt in der Lösung von 4mg/l oder weniger.

Nach dem Abschluss der Behandlung werden die Objekte in Bädern mit leicht erwärmten entionisiertem Wasser gespült, um die eingebrachten Chemikalien auszuwaschen. So wäre zum Beispiel ein Verbleiben von Natriumhydroxid im Objekt aufgrund der stark hygroskopischen Eigenschaft korrosionsfördernd[3]. Bei einer ungenügenden Natriumhydroxidentfernung können Ausblühungen aus weißen NaHCO3 Kristallen entstehen[4]. Die Bildung der Kristalle kann wiederum mit Spannungen und Rissbildungen im Objekt einhergehen.

Liegt der pH-Wert der Waschlösung im neutralen Bereich ist dies ein Indiz dafür, dass das Natriumhydroxid weitestgehend entfernt wurde.

Im Anschluss erfolgt die Trocknung der Objekte im Vakuumtrockenschrank. Die Trocknung wird so lange ausgeführt bis an zuvor ausgewählten Objekten keine Gewichtsveränderung mehr festzustellen ist.

Wirkungsweise[Bearbeiten]

Die Hauptantriebskraft für Chlorid-Ionen aus einem Objekt in eine Waschlösung abzuwandern ist die Diffusion. Das bedeutet, dass die Chlorid-Ionen bestrebt sind aus einer Region mit hoher Konzentration also von der Grenzfläche Metall/Korrosion in eine Region mit einer niedrigeren Konzentration also in die Waschlösung zu diffundieren.[5]

Die Diffusionsraten sind für die Ionen, die durch eine Lösung in Poren von festen Stoffen (Korrosionsschicht) diffundieren kleiner als für die Ionen, die durch eine offene Lösung diffundieren[6].

Die Diffusion von Chlorid-Ionen wird beeinflusst durch die Porosität der Korrosionsschicht. Die in der Waschlösung gelösten Chlorid-Ionen in der Korrosionsschicht müssen mit der Lösung durch Risse, Haarrisse und verbundene Poren im festen Material diffundieren um das Bad zu erreichen. Wenn die Chlorid-Ionen in separaten Gebieten in einem relativ undurchdringlichen Material eingeklemmt sind, dann ist es der Waschlösung nahezu unmöglich einzudringen und die Chlorid-Ionen können nicht diffundieren[7].

Die Entsalzung mit alkalischem Sulfit basiert auf einer stark alkalischen Waschlösung aus Natriumhydroxid und Natriumsulfit. Im Folgenden werden zunächst die Wirkungsweisen der einzelnen Badkomponenten auf archäologisches Eisen beschrieben.

Wirkungsweise von Natriumhydroxid[Bearbeiten]

Die wässrige Lösung von Natriumhydroxid bezeichnet man als Natronlauge. Natronlauge besitzt einen stark basischen Charakter.[8]

Alkalische Lösungen zeigen eine höhere Effektivität bei der Entfernung von Chlorid-Ionen aus dem Eisen als nahezu neutrale Lösungen[9]. Dafür können mehrere Ursachen in Frage kommen. Im Folgenden werden die Passivität, die Verminderung der Adsorption von Chlorid-Ionen, die Steigerung der Porosität und der Anionenaustausch im Akaganeit als mögliche Ursachen beschrieben.

Passivität[Bearbeiten]

Gibt man metallisches Eisen in eine alkalische Lösung bilden die Fe2+-Ionen Eisen(II)-hydroxide (Fe(OH)2). Diese oxidieren und hydrolysieren zu einem hauptsächlich unlöslichen Film aus Eisenoxiden und Eisenhydroxiden.[10] Hierbei erweisen sich die Eisenoxide als thermodynamisch stabiler als die Eisenhydroxide[11]. Wird dieser Film im direkten Kontakt mit der Eisenoberfläche gebildet, kann er den Transfer von Fe2+-Ionen vom Metall in die Lösung verhindern. Das Eisen wird passiviert.[12]

Die Korrosionsgeschwindigkeit von Eisen sinkt signifikant, wenn der pH-Wert an der Metalloberfläche hoch genug ist, um Fe2+-Ionen in Fe(OH)2 ausfallen zu lassen. Im Allgemeinen verlangsamt sich die Korrosionsgeschwindigkeit von metallischem Eisen wenn der pH-Wert über 9 steigt und fällt zu einer vernachlässigbaren Geschwindigkeit ab, wenn der pH-Wert über 12 liegt.[13]

Der hohe pH-Wert ist entscheidend für die Ausbildung einer Passivschicht. Die Zeit bis die Passivierung eintritt dauert länger, wenn der pH-Wert einer alkalischen Lösung geringer ist. Offensichtlich benötigen die OH--Ionen eine gewisse Zeit, um an die Metalloberfläche zu diffundieren und dort den pH-Wert in ein alkalisches Milieu zu heben. Die OH--Ionen sind notwendig um mit den Fe2+-Ionen zu Eisen(II)-hydroxid zu reagieren. Bei der Bildung von Eisen(II)-hydroxid wird die lokale Konzentration an OH--Ionen aufgebraucht. Es müssen immer genügend OH--Ionen auf der Metalloberfläche und somit auch in der Lösung sein, um den lokalen Verbrauch auszugleichen und eine Bildung einer passivierenden Oxidschicht zu gewährleisten. Ferner dienen die OH--Ionen dazu den pH-Wert der Lösung in einem Bereich zu halten, in dem die Eisen(II)-hydroxide unlöslich sind.[14] Denn auf dieser Unlöslichkeit basiert die entstehende Passivschicht.

Aufgrund dessen, dass die Passivschicht den Transfer von Fe2+-Ionen vom Metall in die Lösung verhindert, werden auch keine Chlorid-Ionen mehr für einen Ladungsausgleich angezogen. Die Chlorid-Ionen können somit leichter in die Lösung diffundieren. Allerdings tritt das Phänomen der Passivierung an metallischem Eisen auf. Für archäologisches Eisen bedeutet dies, dass die Passivierung an den Stellen einsetzt, wo metallisches Eisen der Natronlauge zugänglich ist. Aufgrund vorhandener Korrosionsprodukte kann sich keine durchgängige Schicht ausbilden und die Qualität der Passivschicht ist vermindert.

Eine hohe Chlorid-Ionenkonzentration wirkt unter Umständen einer Passivierung entgegen. Die Chlorid-Ionen bilden mit den Fe2+- und Fe3+-Ionen lösliche Komplexe, was eine Filmbildung erschwert.[15] Außerdem sind die Chlorid-Ionen in der Lage den schützenden Oxidfilm auf der Eisenoberfläche zu durchdringen. Ein lokaler Angriff an den beschädigten Stellen wäre die Folge (Lochfraß).[16] Für das Entsalzungsbad heißt dies, dass die heraus gelösten Chlorid-Ionen ebenso Einfluss auf die Passivierung nehmen können, was einen regelmäßigen Badwechsel umso wichtiger macht.

Verminderung der Adsorption von Chlorid-Ionen

Eine weitere Ursache für eine erhöhte Wirksamkeit der Natronlauge bei der Chloridentfernung liegt in dem hohen pH-Wert begründet. In einer sauren Lösung besitzt die Oxidoberfläche aufgrund des Überschusses an Wasserstoff-Ionen eine positive Ladung. Dies führt dazu, dass die negativen Chlorid-Ionen auf der Oxidoberfläche adsorbiert werden. Die Adsorption von Chlorid-Ionen an der Eisenoxidoberfläche sinkt in neutralen und alkalischen Lösungen. Der Anstieg des pH-Wertes verschiebt durch einen Überschuss an OH--Ionen die Ladung an der Oxidoberfläche ins Negative. Werden also archäologische Eisenobjekte mit Eisenoxiden und Eisenoxyhydroxiden in eine stark alkalische Lösung gegeben ist die zu erwartende Adsorption von Chlorid-Ionen an der Oxidoberfläche gering.[17]

Steigerung der Porosität[Bearbeiten]

Untersuchungen zeigen, dass eine Behandlung von archäologischem Eisen mit Natronlauge die Porosität der Korrosionsprodukte erhöht. Der nützliche Effekt wird elektrochemischen Reaktionen, die rasant an der Grenzfläche Eisen/Korrosion ablaufen zugeschrieben. Spalten und Rissbildung in der Korrosionsschicht können die Folge sein.[18] Dies wiederum führt zu einer steigenden Porosität, was ein vermehrtes und schnelleres Entfernen von Chlorid-Ionen aus dem Objekt möglich macht. Andererseits geht ein Anstieg der Porosität auch mit einer Abnahme der mechanischen Stabilität der Korrosionsschicht einher. So können sich z. B. Korrosionsprodukte leichter vom Objekt lösen.[19] Ferner können sich bei diesen elektrochemischen Reaktionen Eisenhydroxide und in sauerstoffreichen Lösungen Eisenoxyhydroxide bilden. Die neu gebildeten Feststoffe können den Zugang für die Chlorid-Ionen in die Lösung behindern.[20] In diesem Falle sinkt die Porosität an den entsprechenden Stellen.

Eine Steigerung der Porosität kann auch in der besseren Fähigkeit von alkalischen Lösungen Fremdmaterialien aus den Korrosionsschichten zu lösen begründet liegen. So steigt die Löslichkeit von Quarz über einen pH-Wert von 9 deutlich an.[21]

Anionenaustausch im Akaganeit[Bearbeiten]

In Bezug auf das Akaganeit kommt der Natronlauge eine weitere Funktion zu. Hydroxid-Ionen sind kleiner als der Tunneldurchmesser des Akaganeits (0,35nm). Sie sind somit in der Lage in die Tunnel einzudringen. Es kommt zu einem Anionenaustauschprozess bei dem die eingelagerten Chlorid-Ionen durch die Hydroxid-Ionen ausgetauscht werden. Werden über eine bestimmte Menge hinaus Chlorid-Ionen aus dem Akaganeit entfernt, kann es zu einer Phasenumwandlung kommen. Bei dieser Umwandlung wird aus dem Akaganeit Hämatit oder Goethit. Vor allem hohe Temperaturen und/oder hohe pH-Werte führen zu einer Entfernung der strukturellen Chlorid-Ionen. Akaganeit ist thermodynamisch keine stabile Verbindung. Die Umwandlung beginnt bei 150°C. Bei ca. 500°C konnte eine 100% Umwandlung in Hämatit beobachtet werden.[22] Durch höhere pH-Werte kann die Phasenumwandlung auch bei geringeren Temperaturen erfolgen. So wurden bei pH-Werten zwischen 11 und 15 und einer Temperatur von 70°C Umwandlungen zu Goethit oder einer Mischung aus Goethit und Hämatit beobachtet.[23] Bei einer Temperatur von 50°C und einem pH-Wert von 11 konnte eine Umwandlung in Hämatit festgestellt werden.[24]

Wirkungsweise von Natriumsulfit[Bearbeiten]

In neutralen und alkalischen Lösungen wird die Korrosion von Eisen gewöhnlich durch die Anwesenheit von gelöstem Sauerstoff verursacht. Sauerstoff ist in gelöster Form in Wasser oder in anderen Elektrolytlösungen, die im Kontakt mit der Atmosphäre stehen, enthalten[25]. Die Korrosionsrate kann signifikant reduziert werden, wenn der gelöste Sauerstoff aus der Badlösung entfernt wird[26].

Studien von WATKINSON und AL-ZAHRANI zeigen, dass die Chloridentfernung in einer Natronlauge (0,5M NaOH), die Sauerstoff enthält, weitaus geringer als in einer sauerstofffreien Natronlauge mit gleicher Konzentration ist. Sie führen als einen möglichen Grund die anhaltende Korrosion des Eisens im Bad an. In Folge der Korrosion werden die Chlorid-Ionen an der Eisenoberfläche gehalten, um die positive Ladung der Eisen-Ionen auszugleichen.[27]

Eine Möglichkeit den gelösten Sauerstoff aus der Lösung zu entfernen, stellt die Zugabe von Natriumsulfit dar. Gelöstes Natriumsulfit wird bei gewöhnlichen Temperaturen durch den im Wasser gelösten Sauerstoff zu Natriumsulfat oxidiert (vgl. Gl. 1) [28].

2Na2SO3 + O2 → 2Na2SO4           (1)

Dabei wird der gelöste Sauerstoff der Lösung entzogen. Auf dieser Reaktion basiert die korrosionshemmende Wirkung von Natriumsulfit.[29]

Natriumsulfit ist ein neutrales Salz, denn es enthält in seinem Molekül weder H+- noch OH--Ionen. Es ist ein Salz einer schwachen Säure, der Schwefligen Säue (H2SO3) und einer starken Base, der Natronlauge. Daher reagiert Natriumsulfit in wässrigen Lösungen alkalisch.[30]

Mit der Zugabe von Natriumsulfit in die Badlösung wird ein Vermeiden der Korrosion des Eisens angestrebt. Dies hat wiederum einen positiven Effekt auf die Chloridentfernung. Die Chlorid-Ionen werden nicht mehr als Anionen zum Ladungsausgleich für in Lösung gegangene Fe2+-Ionen angezogen. Sie können nun aus der Korrosionsschicht in die Lösung diffundieren.[31]

Abwandlung der alkalischen Sulfitreduktion[Bearbeiten]

Die Entfernung von Sauerstoff aus dem Bad kann auf zwei Wegen realisiert werden. Zum einen durch die Anwendung von Korrosionsinhibitoren wie Natriumsulfit oder zum anderen durch das Einleiten von inerten Gasen, wie Stickstoff oder Argon[32].

Bei der alkalischen Sulfitreduktion wird Natriumsulfit dem Bad zugegeben, um den gelösten Sauerstoff zu entfernen.

WATKINSON und AL-ZAHRANI haben in einer Untersuchung die Entsalzung mit alkalischem Sulfit (0,5M NaOH/ 0,5M Na2SO3) mit der Entsalzung in einer Natronlauge (0,5M NaOH), die mittels Stickstoff entlüftet wurde, im Hinblick auf die Effektivität bei der Chloridentfernung miteinander verglichen. Im Ergebnis erwies sich die Natronlauge, die mittels Stickstoff entlüftet wurde sogar als geringfügig effizienter bei der Chloridentfernung. Somit kann der entsalzende Effekt hauptsächlich der Natronlauge zugeschrieben werden. Möglicherweise steigert die Abwesenheit der Sulfat- und Sulfit-Ionen die Effizienz der Chloridentfernung.[33]


  1. Vgl. SCHMIDT-OTT, OSWALD 2006, 130ff.
  2. Vgl. LANDOLT 2007, 167.
  3. Vgl. SELWYN 2004(a), 68.
  4. Vgl. NORTH 1987, 222.
  5. Vgl. SELWYN, ARGYROPOULOS 2005, 82.
  6. Ebd., 91.
  7. Vgl. SELWYN 2004(b), 298ff.
  8. Vgl. SCHWISTER (Hrsg.) 2005, 290f.
  9. Vgl. SELWYN, ARGYROPOULOS 2005, 93.
  10. Vgl. SELWYN 2004(b), 298.
  11. Vgl. KAESCHE 1979, 38.
  12. Vgl. SELWYN 2004(b), 298.
  13. Vgl. SELWYN, ARGYROPOULOS 2005, 93.
  14. Vgl. SELWYN 2004(b), 299.
  15. Vgl. SELWYN 2004(b), 299.
  16. Vgl. SCHARFF et al. 2000, 26.
  17. Vgl. SELWYN, ARGYROPOULOS 2005, 93.
  18. Vgl. SELWYN 2004(b), 299ff.
  19. Vgl. SELWYN, ARGYROPOULOS 2005, 93.
  20. Vgl. WATKINSON, AL-ZAHRANI 2008, 79.
  21. Vgl. SELWYN 2004(b), 300.
  22. Vgl. GENZ 2005, 34.
  23. Vgl. CORNELL, GIOVANOLI 1990, 470.
  24. Vgl. GENZ 2005, 94.
  25. Vgl. SCHATT, WORCH (Hrsg.) 2003, 341f.
  26. Vgl. SELWYN 2004(b), 298f.
  27. Vgl. WATKINSON, AL-ZAHRANI 2008, 82.
  28. Vgl. SELWYN 2004(b), 299.
  29. Vgl. DECHEMA (Hrsg.) 1965, Bl. 2.
  30. Vgl. KOHAUPT 1972, 41.
  31. Vgl. SELWYN, ARGYROPOULOS 2005, 93.
  32. Vgl. WRANGLEN 1985, 180.
  33. Vgl. WATKINSON, AL-ZAHRANI 2008, 82f.