Cit:Lubelli:2021
Autor | Lubelli, B. and RILEM TC 271-ASC members |
Jahr | 2021 |
Titel | A new accelerated laboratory test for the assessment of the durability of materials with respect to salt crystallization |
Bibtex | @inproceedings { Lubelli:2021,
title = {A new accelerated laboratory test for the assessment of the durability of materials with respect to salt crystallization}, booktitle = {Proceedings of SWBSS 2021 – Fifth International Conference on Salt Weathering of Buildings and Stone Sculptures}, year = {2021}, editor = {Lubelli, B.; Kamat, A.A.; Quist, W.J.}, pages = {55-67}, publisher = {TU Delft Open}, note = {The RILEM Technical Committee 271-ASC was set up in 2016 with the aim of developing an improved procedure for the assessment of the durability of porous building materials, such as brick and natural stone, against salt crystallization, accelerating the deterioration process without significantly altering its mechanism.The test procedure developed by the TC 271-ASC proposes a new approach to saltcrystallization tests. It starts from the consideration that it is necessary to accumulate a certain amount of salt to activate the damage. Thus salt damage can be seen as a process developing in two phases: accumulation and propagation. Based on this approach, a new salt crystallization test procedure has been defined, consisting of two phases: a first phase, in which salts are introduced in the material and accumulate close to the evaporation surface, followed by a second phase, in which damage propagates because of repeated dissolution and crystallization cycles induced by re-wetting with liquid water and by relative humidity (RH) changes. In this paper the procedure is described and the reasons for the choices made are elucidated. The procedure has been tested on two types of limestone and, at the moment of writing, is being validated in a round robin test carried out on 9 different substrates and involving 11 laboratories. Based on the results of the round robin test, the procedure will be fine-tuned.}, key = {SWBSS 2021}, url = {https://predict.kikirpa.be/wp-content/uploads/2021/12/SWBSS2021_Procedings.pdf }, author = {Lubelli, B. and RILEM TC 271-ASC members} } |
DOI | - |
Link | - |
Bemerkungen | in: Lubelli, B.; Kamat, A.A.; Quist, W.J. (Hrsg.): Proceedings of SWBSS 2021 – Fifth International Conference on Salt Weathering of Buildings and Stone Sculptures,TU Delft Open S.55-67 |
Eintrag in der Bibliographie
[Lubelli:2021] | Lubelli, B.; RILEM TC 271-ASC members (2021): A new accelerated laboratory test for the assessment of the durability of materials with respect to salt crystallization. In: Lubelli, B.; Kamat, A.A.; Quist, W.J. (Hrsg.): Proceedings of SWBSS 2021 – Fifth International Conference on Salt Weathering of Buildings and Stone Sculptures,TU Delft Open 55-67, Webadresse. |
Keywords[Bearbeiten]
Salt weathering, test procedure, assessment methods, RILEM TC 271-ASC
Abstract[Bearbeiten]
The RILEM Technical Committee 271-ASC was set up in 2016 with the aim of developing an improved procedure for the assessment of the durability of porous building materials, such as brick and natural stone, against salt crystallization, accelerating the deterioration process without significantly altering its mechanism.The test procedure developed by the TC 271-ASC proposes a new approach to saltcrystallization tests. It starts from the consideration that it is necessary to accumulate a certain amount of salt to activate the damage. Thus salt damage can be seen as a process developing in two phases: accumulation and propagation. Based on this approach, a new salt crystallization test procedure has been defined, consisting of two phases: a first phase, in which salts are introduced in the material and accumulate close to the evaporation surface, followed by a second phase, in which damage propagates because of repeated dissolution and crystallization cycles induced by re-wetting with liquid water and by relative humidity (RH) changes. In this paper the procedure is described and the reasons for the choices made are elucidated. The procedure has been tested on two types of limestone and, at the moment of writing, is being validated in a round robin test carried out on 9 different substrates and involving 11 laboratories. Based on the results of the round robin test, the procedure will be fine-tuned.